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Abstract

We develop an approach for constructing the Baxter Q-operators for generic
sl(N) spin chains. The key element of our approach is the possibility of
representing a solution of the Yang–Baxter equation in the factorized form. We
prove that such a representation holds for a generic sl(N) invariant R-operator
and find the explicit expression for the factorizing operators. Taking trace of
monodromy matrices constructed of the factorizing operators one defines a
family of commuting (Baxter) operators on the quantum space of the model.
We show that a generic transfer matrix factorizes into the product of N Baxter
Q-operators and discuss an application of this representation for a derivation
of functional relations for transfer matrices.

PACS numbers: 02.30.lk, 05.50.+q, 75.10.Jm
Mathematics Subject Classification: 82B23, 81R12

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The notion of an R-matrix plays a key role in the theory of lattice integrable systems. It is
defined as a solution of the Yang–Baxter equation (YBE) [1]. The quantum inverse scattering
method (QISM) [2–5] allows one to relate an exactly solvable model with each solution of
the YBE and provides the methods of its analysis. These methods are the algebraic Bethe
ansatz (ABA) [2, 6], the method of Baxter Q-operators [7] and separation of variables (SoV)
[4]. The most widespread and well studied of them, ABA, depends crucially on the existence
of a pseudovacuum state in the Hilbert space of a model. This requirement holds for a
majority of the models which found applications in statistical mechanics and quantum field
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theory. Systems like the Toda chain [8] or noncompact spin magnets [9], for which the ABA
method is not applicable, can be analyzed with the method of Baxter Q-operators and SoV.
Unfortunately, these methods are less developed in comparison with ABA and their application
was so far restricted to models with low rank symmetry groups. The main obstacle for the
effective use of the method of Baxter Q-operators is the absence of a regular method of their
construction. Nevertheless, in recent past there was certain progress in the field. The Baxter
operators are now known for a number of models, see [9–31]. Special attention was paid to the
analysis of the spin chain models with sl(n) or Uq(ŝl(n)) symmetry and their supersymmetric
extensions. In the approach developed by Bazhanov et al [11] the Baxter Q-operators are
constructed as a trace of the special monodromy matrix, the auxiliary space being an infinite-
dimensional representation of the q-oscillator algebra. The method was applied to the models
associated with the affine quantum algebras Uq(ŝl(2)) [11], Uq(ŝl(3)) [19] and Uq(ŝl(2|1))

[31]. The construction relies on the explicit solution for the universal R-matrix [32–34].
Since the latter is rather complicated, it causes technical problems if one attempts to extend
the analysis to a general, Uq(ŝl(N)), case [30].

The spin chain models associated with sl(N = 2, 3) and sl(2|1) algebras were analyzed
in [28, 35–37] by a different method. It results in much the same functional relations among
the Baxter Q-operators and transfer matrices as for the q-deformed models. This method
relies heavily upon the special representation for the R-operator. Namely, it was shown in
[38] that the sl(N = 2, 3) and sl(2|1) invariant R matrices on a tensor product of generic
representations can be represented as a product of two (sl(2)) and three (sl(3) and sl(2|1))
simpler operators. These operators possess a number of remarkable properties which are easily
translated into the properties of the corresponding transfer matrices. There is no doubt that
the factorized representation for R-operator exists for a general N. The factorizing operators
were constructed in the explicit form in [29] for an invariant R-operator acting on the tensor
product of the principal continuous series representations of SL(N, C) group. The aim of the
present paper is to show that the factorization holds for an invariant R-operator on the tensor
product of generic (infinite-dimensional) highest weight representations of the sl(N) algebra
(Verma modules).

The Verma module over sl(N) algebra can be realized as a vector space of polynomials
of N(N − 1)/2 variables of an arbitrary degree, see section 3. We will use this realization
throughout the paper. The defining equations for the factorizing operators on Verma modules
are too complicated to be solved directly for a general N. To find a solution we will use the
results of [29] where the invariantR operator acting on the tensor product of the principal series
representation of SL(N, C) group was constructed. This construction uses the properties of
the intertwining operators for the principal series representations and naturally gives rise to the
factorized form of the R-operator. The building blocks for the R-operator are simple integral
operators defined on functions from L2(Z × Z), where Z is the group of lower unitriangular
matrices. We try to interpret these operators as operators on Verma modules. Below we
show that such an interpretation is possible and find explicit expressions for the factorizing
operators.

As an illustration let us briefly consider the simplest case of the SL(2, C) group. The
SL(2, C) invariant R-operator acts on the tensor product of two unitary principal series
representations, T (s1,s̄1) ⊗ T (s2,s̄2),

[T (s,s̄)(g)f ](z) = (cz + d)−2s(c̄z̄ + d̄)−2s̄f

(
az + b

cz + d

)
,

s̄ = 1 − s∗, 2(s − s̄) = n, f ∈ L2(C). It can be represented in the factorized form [29]

R(u − v) = V (u1 − u2)S(v1 − u1)V (v1 − u2)U(u1 − v2)S(v2 − u2)U(u2 − u1). (1.1)
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All operators U,V, S depend on two spectral parameters, holomorphic and antiholomorphic
ones, the latter (antiholomorphic) is not displayed explicitly, i.e. U(λ) ≡ U(λ, λ̄), with
λ − λ̄ = n being integer. In equation (1.1) we have put u1 = u + 1 − s1, u2 = u + s1, v1 =
v + 1 − s2, v2 = v + s2, and similarly for the barred parameters, ū1 = ū + 1 − s̄1, etc. The
operators U and V are integral operators

[U(λ)f ](z, w) = A(λ)

∫
d2ξ ξ−1−λξ̄−1−λ̄f (z − ξ,w),

(1.2)
[V (λ)f ](z, w) = A(λ)

∫
d2η η−1−λη̄−1−λ̄f (z, w − η)

(the factor A(λ) is defined in equation (2.36)), while the operator S(λ) is a multiplication
operator

[S(λ)f ](z, w) = (z − w)−λ(z̄ − w̄)−λ̄f (z, w). (1.3)

For λ∗ = −λ̄ all operators are unitary operators with respect to the standard scalar product
on L2(C × C). It is clear that an interpretation of the operators U,V and S as operators on
the product of Verma modules causes a lot of problems and hardly possible at all. However,
for the products of U,V and S operators, R(1) = V SV and R(2) = USU , such interpretation
exists. Indeed, the action of the operator R(2) on a test function can be represented in the form4

[R(2)f ](z, w) = A(u2 − v2)

∫
d2ξ [1 − ξ ]v2−u2−1[ξ ]u1−v2f (ξ(z − w) + w,w), (1.4)

where we put for brevity [ξ ]λ ≡ ξλξ̄ λ̄. Let us explore this integral for the case when f (z,w) is
a holomorphic polynomial in z and w. It is clear that the result is a polynomial again provided
that the integrals

Ik(α, β) =
∫

d2ξ ξk[1 − ξ ]−α[ξ ]−β, (1.5)

where α = 1 + u2 − v2 and β = v2 − u1, converge for an arbitrary k in some region of the
parameters α and β. Let us assume that ᾱ − α = n > 0 and β̄ − β = m > 0. The integral
(1.5) converges in the vicinity of the singular points ξ = 0, 1,∞ if Re α < 1, Re β < 1 and
Re ᾱ + β̄ > 1, respectively. These conditions can always be satisfied. Thus equation (1.4)
defines an operator on the product of Verma modules. It could be checked that this operator
coincides with the factorizing operator obtained in [38]. Next, the integral (1.5) is an analytic
function of α, β,

Ik(α, β) = π(−1)n+m+k �(n − α)

�(α)

�(m − β)

�(β − k)

�(n + m + α + β − 1)

�(2 + k − α − β)
,

hence one can extend the domain of definition of operator (1.4) to arbitrary α, β. Thus we have
constructed the factorizing operator on the tensor product of sl(2) Verma modules starting
from the solution for the SL(2, C) case.

In what follows we extend these arguments to a general case of sl(N) invariant R
operator. Instead of a direct calculation of integrals (which becomes too cumbersome) we
accept another approach. An operator on the Verma module is determined by its matrix in
some basis. However, such a description is not very convenient. It is preferable to describe
an operator by its kernel which is defined as follows, A(z,w) = ∑

kn ek(z)Aknhn(w), where
ek(z) and hn(w) are basis vectors in the Verma module and its dual space. The function

4 The derivation of equation (1.4) makes use of the so-called star–triangle relation [39], see e.g. [9, 29] for details.
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A(z,w) depends on the functional realization of the dual space, but as the latter is fixed there
is a one-to-one correspondence between an operator and its kernel. Proceeding in this way
we derive the defining equation for the kernel of the factorizing operator. Instead of solving
this equation we show that the ‘kernel’ of SL(N, C) operator calculated in some specific
basis satisfies the same equation and, hence, provides the kernel of the factorizing operator
on the Verma module. The factorizing operators in the SL(N, C) case possess a number of
remarkable properties. The heuristic arguments given above imply that the operators obtained
by ‘SL(N, C) → sl(N) reduction’ should inherit all these properties.

Taking the trace of monodromy matrices constructed from the factorizing operators one
defines a family of commuting operators (Baxter Q-operators) on the quantum space of the
model. The trace is taken over an infinite-dimensional space and, in general, diverges for
the model with unbroken sl(N) symmetry. The finiteness of the traces can be provided by
introducing a regulating factor [15, 19, 24, 25] which breaks sl(N) symmetry down to its
diagonal subgroup. We prove that in this case the traces for the Baxter operators converge
absolutely. Moreover, the Baxter operators can be identified with the generic sl(N) transfer
matrix with a specially chosen auxiliary space. Using the properties of the factorizing operators
we show that a generic transfer matrix can be represented as a product of Baxter Q-operators.
This representation is quite helpful for the study of the functional relations among the transfer
matrices. Though we will mainly discuss the homogeneous spin chains the approach is
applicable to the analysis of the inhomogeneous spin chain models.

The paper is organized as follows: in section 2, we recall some basic facts about
representations of SL(N, C) group and fix the notation. We give also the summary of
the results of [29] which will be necessary for further discussion. In section 3, the sl(N)

invariant R-operator on the tensor product of two Verma modules is constructed. To handle
some technical problems we introduce an invariant bilinear form on a Verma module and
describe an operator by its kernel with respect to this form. Using this technique we find the
explicit form of the factorizing operators in the sl(N) case. We prove that these operators obey
certain commutation relations. In section 4, we construct the Baxter operators and study their
properties. A generic invariant transfer matrix is defined as the trace of the monodromy matrix
over an infinite-dimensional auxiliary space. To ensure convergence of the trace we introduce
a boundary operator which breaks the sl(N) symmetry of the transfer matrix to its diagonal
subalgebra. We prove that the corresponding trace over an infinite-dimensional space exists
and show that a generic transfer matrix factorizes into a product of N Baxter Q-operators.
Section 5 contains concluding remarks. The derivation of some technically involved results is
presented in the appendices.

2. SL(N , C) invariant R-operator: principal series representations

To make further discussion self-contained we give here a brief review of the principal series
representations of the SL(N, C) group, and then formulate the results of [29] which will be
used in subsequent analysis.

2.1. Principal series representation of SL(N, C)

The unitary principal series representations of the group SL(N, C) can be realized on the
space of functions on the group of lower triangular N × N matrices [40, 41]. Namely, let
Z−(Z+) and H+(H−) be the groups of lower (upper) unitriangular matrices and upper (lower)
triangular matrices with unit determinant, respectively,

4
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z =

⎛⎜⎜⎜⎜⎜⎝
1 0 0 . . . 0

z21 1 0 . . . 0
z31 z32 1 . . . 0
...

...
...

. . .
...

zN1 zN2 . . . zN,N−1 1

⎞⎟⎟⎟⎟⎟⎠ ∈ Z−, h =

⎛⎜⎜⎜⎜⎜⎝
h11 h12 h13 . . . h1N

0 h22 h23 . . . h2N

0 0 h33 . . . h3N

...
...

...
. . .

...

0 0 0 . . . hN,N

⎞⎟⎟⎟⎟⎟⎠ ∈ H+.

Almost any matrix g ∈ G = SL(N, C) admits the Gauss decomposition g = zh. The element
z1 ∈ Z− satisfying the condition g−1 · z = z1 · h will be denoted by zḡ, so that g−1z = zḡ · h.
The homomorphism g → T α(g),

[T α(g)	](z) = α(h−1)	(zḡ), (2.1)

defines a principal series representation of the group SL(N, C) on a suitable space of functions
on the group Z−,	(z) = 	(z21, z̄21, z31, z̄31, . . . , zNN−1, z̄NN−1) [40, 41]. The function α in
equation (2.1) is the character of the group H+,

α(h) =
N∏

k=1

h
−σk−k
kk h̄

−σ̄k−k
kk . (2.2)

Here h̄kk ≡ (hkk)
∗ is the complex conjugate of hkk , whereas in general σ ∗

k �= σ̄k . We put
σ = (σ1, . . . , σN) and will sometimes use notation T σ instead of T α. Since det h = 1 the
function α(h) depends only on the differences σk,k+1 ≡ σk − σk+1 and can be rewritten in the
form

α(h) =
N−1∏
k=1

(�k(h))1−σk,k+1(�̄k(h))1−σ̄k,k+1 =
N−1∏
k=1

(�k(h))nk |�k(h)|2(1−σ̄k,k+1), (2.3)

where nk = σ̄k,k+1 − σk,k+1, k = 0, . . . , N − 1 are integer numbers, nk ∈ Z.5 The function
�k(M) is defined by

�k(M) = det Mk, (2.4)

where the k × k matrix Mk is the kth main minor of the matrix M , and �̄k(M) = (�k(M))∗.
That is �k(h) = ∏k

i=1 hii for h ∈ H+. We will assume that the parameters σk satisfy the
restriction

σ1 + σ2 + · · · + σN = N(N − 1)/2. (2.5)

The operator T α(g) is a unitary operator on the Hilbert space L2(Z−),

〈	1|	2〉 =
∫

Dz(	1(z))
∗	2(z), Dz =

∏
1�i<k�N

d2zki,

if the character α′(h) = α(h)
∏N

k=1 |hkk|2k is a unitary one, i.e. |α′| = 1. This condition holds
if σ ∗

k,k+1 + σ̄k,k+1 = 0 for k = 1, . . . , N − 1, i.e.

σk,k+1 = −nk

2
+ iλk, σ̄k,k+1 = nk

2
+ iλk, k = 1, 2, . . . , N − 1, (2.6)

where nk is an integer and λk is real. The unitary principal series representation T α is
irreducible. Two representations T α and T α′

are unitary equivalent if and only if the
corresponding parameters (σ1, . . . , σN) and (σ ′

1, . . . , σ
′
N) are related by a permutation, see

for details [40, 41].

5 From now on, since each variable a comes along with its antiholomorphic twin ā we will write down only the
holomorphic variant of equations.
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We will also need the explicit expression for the generators of infinitesimal SL(N, C)

transformations, which are defined in the standard way[
T α

(
11 +

∑
ik

εikEki

)
	

]
(z) = 	(z) +

∑
ik
(εikEki + ε̄ikĒki)	(z) + O(ε2).

Here Eik (1 � i, k � N), are the generators in the fundamental representation of the SL(N, C)

group,

(Eik)nm = δinδkm − 1

N
δikδnm. (2.7)

The generators Eik(Ēik) are linear differential operators in the variables zmn(z̄mn), (1 � n <

m � N) which satisfy the commutation relation

[Eik, Enm] = δknEim − δimEnk. (2.8)

The generators Eik admit the following representation [29]:

Eik = −
∑
m�n

zkm(Dnm + δnmσm)(z−1)ni . (2.9)

Here Dnm, n > m are the generators of the right shifts, 	(z) → 	(zz0),

	

(
z
(

11 +
∑

k>i
εikEki

) )
=

(
1 +

∑
k>i

(εikDki + ε̄ikD̄ki) + O(ε2)

)
	(z). (2.10)

Equation (2.9) can be written in the matrix form

E = −z (σ + D) z−1, (2.11)

where

E =
∑
ik

Eikeki, , D =
∑
i>k

Dikeki, σ =
∑

k

σkekk (2.12)

and the matrices enm (n,m = 1, . . . , N) form the standard basis in the space Mat(N ×
N), (enm)ik = δinδmk. The generators Dki satisfy the same commutation relation as Eki ,
(equation 2.8) [Dki,Dnm] = δinDkm − δkmDni and commute with the generators of left shifts,
Eki, k > i. An explicit expression for the generators of left and right shifts reads

Eki = −
i∑

m=1

zim

∂

∂zkm

=
N∑

m=k

z̃mk

∂

∂z̃mi

, (2.13)

Dki = −
i∑

m=1

z̃im

∂

∂z̃km

=
N∑

m=k

zmk

∂

∂zmi

, (2.14)

where z̃ki = (z−1)ki and we recall that zii = 1. Let us note here that the operator Dki depends
on the variables in the kth and ith columns of the matrix z, or on the variables in the kth and
ith rows of the inverse matrix z−1.

2.2. Coherent states

In this subsection we describe the system of functions with ‘good’ transformation properties
with respect to SL(N, C) transformations. This system will play a key role in establishing
relationship between R-operators defined on different spaces of functions. Namely, we define

�σ(z, α) =
N−1∏
k=1

(�k(αz))−1+σk,k+1(�̄k(αz))−1+σ̄k,k+1 , (2.15)

6
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where �k(M) = det Mk , see equation (2.4). The function �σ(z, g−1) is nothing but the
prefactor α in equation (2.1), i.e. �σ is a transformation of unity,

�σ(z, g−1) = T α(g) · 1 = α(h−1(z, g)). (2.16)

We will refer to the function �σ(z, α), with α being an upper triangular matrix, α ∈ Z+, as a
coherent state. For a unitary representation the system of coherent states {�σ(z, α), α ∈ Z+}
is a complete orthogonal system in L2(Z). Indeed, it is easy to verify that the integral operator
D defined as

[Dϕ](z) =
∫

Dα�σ(z, α)ϕ(α), α ∈ Z+, Dα =
∏

1�i<k�N

d2αik (2.17)

intertwines the unitary representations T α and T̃ γ ,

T α(g)D = DT̃ γ(g). (2.18)

The representation T̃ γ is defined on functions on the group Z+,

[T̃ γ(g)f ](α) = γ(h)f (αḡ), γ(h) =
N−1∏
k=1

(�k(h))−1−σk,k+1(�̄k(h))−1−σ̄k,k+1 . (2.19)

Here for α ∈ Z+ and g ∈ SL(N, C) we put α · g = h · αḡ, h ∈ H−. It follows from
equation (2.18) that the operator DD† commutes with all operators T α(g). Since T α(g) is an
operator-irreducible representation [40] the operator DD† is proportional to the unit operator.
Hence ∫

Dz �σ(z, α)�σ(z, α′) = cN(σ)
∏

1�k<i�N

δ2(αik − α′
ik), (2.20)

where δ2(z) = δ(x)δ(y) for complex z = x + iy. For the normalization factor we obtained

cN(σ) =
∏

1�k<i�N

π2

|σi − σk|2 .

As was mentioned above coherent states have good transformation properties. Namely, one
easily derives

α−1(h+(z, g))�σ(zḡ, α) = α−1(h−(α, g−1))�σ(z, αḡ−1), (2.21)

where, we recall, g−1 · z = zḡ · h+(z, g), α · g−1 = h−(α, g−1) · αḡ−1. Equation (2.21) can
be brought into the form

T σ
z (g)�σ(z, α) = T̃ −σ

α (g−1)�σ(z, α), (2.22)

where the transformation T̃ −σ(g) is given by equations (2.19) with the substitution σk → −σk .
Thus the coherent state �σ(z, α) satisfies the equation(

E
(z)
ik + Ẽ

(α)
ik

)
�σ(z, α) = 0, (2.23)

where Eik and Ẽik, i, k = 1, . . . , N , are the generators of the sl(N) algebra in the
representations T σ and T̃ −σ, respectively.

7
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2.3. Factorized form of R operator

The Yang–Baxter equation is an operator equation which is a corner stone of the theory of
integrable systems. It has the form

R12(u − v)R13(u − w)R23(v − w) = R23(v − w)R13(u − w)R12(u − v). (2.24)

The operators act on the tensor product V1 ⊗V2 ⊗V3. As usual, an operator with the indices ik
acts nontrivially on the space Vi ⊗Vk only, (i.e. R12 = R12 ⊗ I3 and so on). We are interested
in SL(N, C) invariant solutions of the YBE. Therefore, it will be assumed that each space
carries a certain representation of the SL(N, C) group. For a special choice, V3 = Vf , where
Vf is the fundamental representation of SL(N, C), the YBE turns into the RLL relation. It
has the form

R12(u − v)L1(u)L2(v) = L2(v)L1(u)R12(u − v), (2.25)

where L(u) is the Lax operator

L(u) = u +
∑
mn

emnEnm. (2.26)

With the help of equation (2.9) the Lax operator (2.26) can be represented as (see
equation (2.11))

L(u) = z(u − σ − D)z−1. (2.27)

The form of the operators of right shifts does not depend on a representation, hence the Lax
operator is completely determined by the set of numbers (spectral parameters) {u1, . . . , uN },
where uk = u − σk , i.e. L(u) = L(u1, . . . , uN).

A solution of the YBE for the principal series representations of the SL(N, C) group,
i.e. an R operator which acts on the tensor product of the principal series representations
T α ⊗ T β,6 has the factorized form [29]

R12(u − v) = P12R
(1)
12 (u1 − v1)R

(2)
12 (u2 − v2) · · · R(N)

12 (uN − vN). (2.28)

Here P12 is the permutation operator, P12f (z,w) = f (w, z) and the parameters uk, vk are
defined as follows, uk = u − σk and vk = v − ρk . All operators depend on holomorphic
and antiholomorphic spectral parameters, i.e. R(k)(λ) = R(k)(λ, λ̄), which are subjected to the
restriction λ − λ̄ ∈ Z, but for brevity we display the holomorphic variables only.

The defining equation for the operator R(k) is

R
(m)
12 (um − vm)L1(u1, . . . , um, . . . uN)L2(v1, . . . , vm, . . . , vN)

= L1(u1, . . . , vm, . . . , uN)L2(v1, . . . , um, . . . , vN)R
(m)
12 (um − vm) (2.29)

and similar for the antiholomorphic Lax operators. Thus the operator R
(m)
12 (um−vm) exchanges

the spectral parameters um and vm in the Lax operators. It follows from equation (2.29) that
R(m)(λ) intertwines the representations T α ⊗ T β and T αm,λ ⊗ T βm,−λ ,

R(m)(λ)T α(g) ⊗ T β(g) = T αm,λ (g) ⊗ T βm,−λ (g)R(m)(λ), (2.30)

where

αm,λ(h) = h−λ
mmh̄−λ̄

mmα(h), βm,−λ(h) = hλ
mmh̄λ̄

mmβ(h).

The operator R(m) is completely determined by the ‘quantum numbers’ of the representations
they act on, i.e. by the characters α and β, (σ and ρ) and the spectral parameter λ. We will

6 We accept the following ‘standard’ parametrization for the characters, α(h) = ∏N
k=1 h

−σk−k

kk h̄
−σ̄k−k

kk , β(h) =∏N
k=1 h

−ρk−k

kk h̄
−ρ̄k−k

kk . Also, we will use the letters z and w for arguments of the functions from the representation
space of T α ⊗ T β, f (z, w).
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display the spectral parameter λ as an argument of the operator, R(m)(λ|α, β) → R(m)(λ),
and omit the dependence on α and β, assuming that these parameters are always fixed by a
representation the operator acts on.

The solution to equation (2.29) can be represented in the form [29]

R
(m)
12 (um − vm) =

⎛⎝←−
m−1∏
i=1

Ui (ui − vm)

⎞⎠ ⎛⎝−→
N−1∏
j=m

Vj (um − vj+1)

⎞⎠
× S(um − vm)

⎛⎝←−
N−1∏
j=m

Vj (vj+1 − vm)

⎞⎠⎛⎝−→
m−1∏
i=1

Ui (um − ui)

⎞⎠ . (2.31)

The operator S(λ) is a multiplication operator

S(λ)f (z,w) = [(w−1z)N1]λf (z,w), (2.32)

where [a]λ ≡ aλāλ̄. The function [a]λ is single valued only if λ − λ̄ ∈ Z. This condition is
always satisfied in the above construction. The ordered products are defined as follows:

−→
m∏

i=1

Ai = A1A2 · · · Am and

←−
m∏

i=1

Ai = AmAm−1 · · ·A1.

The operators Ui (λ) ≡ Ui (λ, λ̄) and Vi (λ) ≡ Vi (λ, λ̄) are unitary operators if λ∗ + λ̄ = 0.
They can be expressed in terms of the operators of right shifts, equation (2.13), acting on z

and w variables, respectively

Ui (λ, λ̄) = (
D

(z)
i+1,i

)λ(
D̄

(z)
i+1,i

)λ̄
, (2.33)

Vj (λ, λ̄) = (
D

(w)
j+1,j

)λ(
D̄

(w)
j+1,j

)λ̄
. (2.34)

The operators (2.33) are well defined and can be represented as integral operators [29],

[Ui (λ)	](z) = A(λ)

∫
d2ζ [ζ ]−1−λ	(zζ ), (2.35)

where [ζ ]σ = ζ σ ζ̄ σ̄ , zζ = z(1 − ζei+1,i ) and

A(λ)
def= A(λ, λ̄) = 1

π
iλ̄−λ�(1 + λ)/�(−λ̄). (2.36)

The operator Uk , with the spectral parameter λ = σk,k+1 = σk − σk+1, intertwines the
representations, T α and T α′

,

Uk(σk,k+1)T
α(g) = T α′

(g)Uk(σk,k+1), (2.37)

where α′(h) = (hkk/hk+1,k+1)
σk,k+1α(h).

2.4. Properties of factorizing operators

The operators R(k) satisfy a number of remarkable relations [29]

R
(m)
12 (0) = 11, (2.38a)

R
(m)
12 (λ)R

(m)
12 (μ) = R

(m)
12 (λ + μ), (2.38b)

R
(m)
12 (λ)R

(n)
23 (μ) = R

(n)
23 (μ)R

(m)
12 (λ), (n �= m), (2.38c)
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R
(m)
12 (λ)R

(m)
23 (λ + μ)R

(m)
12 (μ) = R

(m)
23 (μ)R

(m)
12 (λ + μ)R

(m)
23 (λ), (2.38d)

R
(m)
12 (λ − σm + ρm)R

(n)
12 (λ − σn + ρn) = R

(n)
12 (λ − σn + ρn)R

(m)
12 (λ − σm + ρm). (2.38e)

These relations are sufficient to prove that the R-operator (2.28) satisfies the YBE [29]. Next,
taking into account equations (2.13), (2.33) and (2.31) one deduces the following commutation
relations for the operators R(m):

R(m)(λ)(z−1)kj = (z−1)kjR
(m)(λ), for k > m, (2.39a)

R(m)(λ)wkj = wkjR
(m)(λ), for j < m (2.39b)

and

D
(z)
k+1,kR

(m)(λ) = R(m)(λ)D
(z)
k+1,k, for k > m + 1, (2.40a)

D
(w)
k+1,kR

(m)(λ) = R(m)(λ)D
(w)
k+1,k, for k < m − 1. (2.40b)

Finally, one can see from the representation (2.31) that the operator R(m) depends only on the
spectral parameters, u1, . . . , um and vm, . . . , vN . Namely, it depends on the spectral parameter
λ = um − vm and

ui − um = σm − σi, i < m, and vm − vj = ρj − ρm, j > m. (2.41)

It means that

R(m)(λ|α, β) = R(m)(λ|α′, β′) (2.42)

if the characters satisfy the following relations:

α(h)

α′(h)
= f (�m(h), . . . ,�N−1(h)) and

β(h)

β′(h)
= ϕ(�1(h), . . . ,�m−1(h)).

That is the ratio α(h)/α′(h) does not depend on �k, k = 1, . . . , m − 1 and similarly for β.

2.5. Factorizing operators in the coherent states basis

Let us calculate the action of the operator R(m) in the coherent state basis

�σρ(z, w|α, β) ≡ �σ(z, α)�ρ(w, β), (2.43)

where z,w ∈ Z− and α, β ∈ Z+. We will use the following notations:

αz = zαdz,α αz, βw = wβdw,ββw, (2.44)

where dz,α, dw,β are diagonal matrices, zα,wβ ∈ Z− and αz, βw ∈ Z+.

Lemma 1. The action of the operator R
(m)
12 (λ) on the state (2.43) is given by[

R
(m)
12 (λ)�σρ

]
(z, w|α, β) = f (m)

σρ (λ)
[(

βww−1zα−1
z

)
mm

]λ
�σρ(z, w|α, β), (2.45)

where [a]λ ≡ aλāλ̄. The prefactor f (m)
σρ (λ) is

f (m)
σρ (λ) =

m−1∏
k=1

(−1)λ−λ̄ A(λ − σkm)

A(−σkm)

N∏
j=m+1

A(λ − ρmj )

A(−ρmj )

=
m−1∏
k=1

(−1)λ−λ̄ A(uk − vm)

A(uk − um)

N∏
j=m+1

A(um − vj )

A(vm − vj )
, (2.46)
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where

A(λ) = 1

π
iλ̄−λ�(1 + λ)/�(−λ̄)

and

λ = um − vm, um = u − σk, vk = v − ρk. (2.47)

The proof of the lemma is rather technical and can be found in appendix A. Now we want to
discuss equation (2.45) in more detail. First, we note that the rhs of equation (2.45) is given
(up to the prefactor f (m)

σρ (λ)) by the product of two functions

Km
λ,σ,ρ(z, w|α, β) = (

βww−1zα−1
z

)λ

mm

(
N−1∏
k=1

(�k(αz))σk,k+1−1(�k(βw))ρk,k+1−1

)
(2.48)

and

K̄m
λ̄,σ̄,ρ̄

(z, w|α, β) = ((
βww−1zα−1

z

)∗
mm

)λ̄

(
N−1∏
k=1

(�k(z
†α†))σ̄k,k+1−1(�k(w

†β†))ρ̄k,k+1−1

)
.

(2.49)

The function K(K̄) is an (anti)holomorphic function of z,w, α, β in the vicinity of the point
z = w = α = β = 1.

Further, it follows from equation (2.29) that the function Km
λ,σ,ρ(z, w|α, β) satisfies the

following equation:

L̃α
1 (u1, . . . , um, . . . uN)L̃

β

2 (v1, . . . , vm, . . . , vN)Km
um−vm,σ,ρ(z, w|α, β)

= Lz
1(u1, . . . , vm, . . . , uN)Lw

2 (v1, . . . , um, . . . , vN)Km
um−vm,σ,ρ(z, w|α, β).

(2.50)

Here the Lax operators L̃1(L̃2) are given by

L̃(u) = u −
∑
mn

emnẼnm, (2.51)

where the generators Ẽnm correspond to the representation T̃ −σ(T̃ −ρ), see equations (2.22),
(2.19). The superscript of the Lax operator (Lz, L̃α) indicates the variable it acts on.
Equation (2.29) follows directly from equations (2.23), (2.29) and (2.45). In the following
section, we show that the function Km

λ,σ,ρ(z, w|α, β) defines a factorizing operator on the
tensor product of Verma modules.

3. sl(N ) invariant R operator for generic highest weight representations

In this section we construct sl(N) invariant solution of the YBE on the tensor product of two
generic highest weight representations of the sl(N) Lie algebra (Verma modules).

Let V be a linear space of polynomials of arbitrary degree in zki ,

V = {P(z21, z31, . . . , zNN−1), deg(P ) < ∞}. (3.1)

The homomorphism

πσ : Eki → Eki = −
∑
m�n

zim(Dnm + δnmσm)(z−1)nk (3.2)

(see equation (2.12) for a definition of Dnm) defines a representation of the sl(N) algebra on
the space V. The operators Eki are completely determined by the parameters {σ1, . . . , σN }.
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More precisely, they depend on the differences σnm = σn − σm. In order to stress a
similarity with the SL(N, C) case, it is convenient to specify the representation by a function
α(h) = ∏N

k=1 h
−k−σk

kk , where h is an upper triangular matrix with unit determinant. Henceforth,
we will use both notations, πα and πσ, for a representation of the sl(N) algebra. A
representation πσ is irreducible if none of the differences σik = σi − σk, i < k, is a positive
integer [42, 43]. We will assume that this condition is fulfilled.

The highest weight vector, υ0, (Eikυ0 = 0, for i > k) of the Verma module (3.1) is
given by υ0 = 1. For the highest weight λ = (λ1, . . . , λN−1), ((Ekk − Ek+1,k+1) · υ0 ≡ λkυ0)

one finds λk = σk+1 − σk + 1. In case if all components of the weight vector λ are negative
integer, λk = −nk, nk � 0, k = 1, . . . , N − 1 then the Verma module has a finite-dimensional
invariant subspace. This subspace is a finite dimensional representation of sl(N) algebra
which corresponds to the Young tableau specified by the partition {�1, . . . , �N−1}, where
�k = ∑N−1

i=k nk is the length of the kth row in the Young tableau.

3.1. Bilinear form and kernel of an operator

We define the following linear combinations of the Cartan generators Ekk and the unit operator,

Hp =
p∑

k=1

(Ekk + σk + k − N) =
N∑

m=p+1

p∑
k=1

zmk

∂

∂zmk

=
N∑

m=p+1

p∑
k=1

z̃mk

∂

∂z̃mk

, (3.3)

where p = 1, . . . , N − 1 and z̃ = z−1. The space V is a direct sum of the weight subspaces
Vh,

V =
∑

h∈ZN−1
+

⊕Vh, Vh = {v ∈ V|(Hp − hp)v = 0, p = 1, . . . , N − 1}. (3.4)

Each subspace Vh has a finite dimension. The union of the bases in all Vh gives a basis in V.
We will mostly use the following basis:

en(z) =
∏
i>k

z
nik

ik , (3.5)

where n is a multi-index, n = {n21, . . . , nNN−1}.
Let �V be a linear space of polynomials of arbitrary degree in z̄ki = z∗

ki ,

�V = {P(z̄21, z̄31, . . . , z̄NN−1), deg(P ) < ∞} (3.6)

and ϕ be an antilinear map V → �V defined by ϕ(en) = ēn = ∏
i>k z̄

nik

ik . We put �Vh = ϕ(Vh).
Let � be a bilinear form on the product �V × V such that

�(v̄, u) = 0, if v̄ ∈ �Vh and u ∈ Vh′ , h �= h′ (3.7a)
the matrix �nm = �(ēn, em) is invertible. (3.7b)

Let A be a linear operator on the space V and Anm be its matrix in the basis en, Aen =∑
m emAmn. We will refer to a function

A(z, w) =
∑
nm

en(z)(A�−1)nmem(w) (3.8)

as a kernel of the operator A. The kernel A(z, w) is an (anti)holomorphic function in z(w) in
the vicinity of the point z = w = 1 (zik = wik = 0) on condition that the series converges.
An action of the operator A on an arbitrary vector from V (which is a polynomial in z) can be
represented as

[AP ](z) = �(A(z, w), P (w)). (3.9)

12
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The bilinear form � is completely determined by a kernel of the unit operator (reproducing
kernel)

I(z, w) =
∑
nm

en(z)�
−1
nmem(w). (3.10)

It is clear that the kernel of an operator does not depend on the choice of the basis. In particular,
the kernel A(z,w) of the operator A can be obtained as

A(z, w) = AI(z, w). (3.11)

Let πσ be an irreducible representation of the sl(N) algebra on the vector space V.
Henceforth we will assume that the space V is equipped with a bilinear form �σ such that the
reproducing kernel has the form

Iσ(z, w) =
N−1∏
k=1

(�k(w
†z))σk,k+1−1. (3.12)

It is easy to derive from equations (2.1) and (2.19) that the kernel Iσ(z, w) satisfies the
equation

E
(z)
ki Iσ(z, w) = −Ẽ

(w̄)
ki Iσ(z, w), (3.13)

where Eik = πσ(eik) and Ẽki = π̃−σ(eik) are the holomorphic generators corresponding to
the representations T σ (equation (2.1)) and T̃ −σ (equations(2.22) and (2.19)).7 It follows from
equation (3.13) that the form �σ (for the irreducible representation) satisfies the properties
(3.7). From equation (3.13) one derives

�σ(ẼkiQ, P ) + �σ(Q,EkiP ) = 0. (3.14)

As usual, a bilinear form on the tensor product of two (or more) representations πσ ⊗ πρ, is
defined as

�σρ(Q1 ⊗ Q2, P1 ⊗ P2) = �σ(Q1, P1) · �ρ(Q2, P2).

It will be useful to have a more functional definition for the bilinear form �σ. Let us put
for any two polynomials P(z) and Q(z̄)

Bσ(Q, P ) = cN(σ)

∫
Dz μσ(z)Q(z̄)P (z), (3.15)

where

μσ(z) =
N−1∏
k=1

(�k(z
†z))−σk,k+1−1. (3.16)

Since P and Q are polynomials, the integral in (3.15) converges in some region of σk,k+1 and,
as will be shown later, defines a meromorphic function of σik , which we take for a definition
of the lhs of (3.15) for arbitrary σik . Note that for positive integer σk,k+1 the integral (3.15)
defines the invariant SU(N) scalar product. It is easy to check that the bilinear form (3.15)
with the measure (3.16) results in equation (3.14). Hence the bilinear form Bσ, equation
(3.15) and the form �σ coincide up to a prefactor. The two forms coincide identically at the
following normalization:

cN(σ) = π−N(N−1)/2

⎛⎝ ∏
1�i<k�N

σik

⎞⎠ (3.17)

7 The representation T̃ −σ was defined on functions of the group Z+, f (α), so that Ẽ
(w̄)
ki = Ẽki (α)|α=w† .

13



J. Phys. A: Math. Theor. 42 (2009) 075204 S É Derkachov and A N Manashov

(Bσ(Q, P ) = 1 = �σ(Q, P ) for Q(z̄) = P(z) = 1). For example, for N = 2 equation (3.15)
becomes

�σ(Q, P ) = 2j + 1

π

∫
d2z

Q(z̄)P (z)

(1 + zz̄)2j+2
, (3.18)

where 2j = σ12 − 1.
It is useful to extend the space V in order to include into consideration non-polynomial

functions which are analytic in the vicinity of the point z = 1(zik = 0). This allows us
to consider finite transformations of functions from V, P (z) → f (z) = α(h)P (zḡ). The
function f (z) is no more a polynomial, however, if g is sufficiently close to unity then f (z) is
an analytic function of z in the vicinity of the point z = 1 (f (z) = ∑

n cnen(z) = ∑
h fh(z),

where fh is a projection of the vector f to the weight subspace Vh). For such functions
the bilinear form is defined as the sum, �σ(ψ̄, f ) = ∑

h �σ(ψ̄h, fh), in case if the series
converges.

3.2. R-matrix and factorizing operators

Our immediate purpose in this subsection is to construct the factorizing operators R(m),m =
1, . . . , N which act on the tensor product of two Verma modules V ⊗ V and solve the RLL
relation

R
(m)
12 (um − vm)L1(u1, . . . , um, . . . uN)L2(v1, . . . , vm, . . . , vN)

= L1(u1, . . . , vm, . . . , uN)L2(v1, . . . , um, . . . , vN)R
(m)
12 (um − vm). (3.19)

The parameters um, vm are defined by equation (2.47). It is straightforward to check that the
operator R

(m)
12 (λ) intertwines the representations πα ⊗ πβ (≡ πσ ⊗ πρ) and παm,λ ⊗ πβm,−λ

(≡ πσ′ ⊗ πρ′
),

R
(m)
12 (λ)πα ⊗ πβ = παm,λ ⊗ πβm,−λR

(m)
12 (λ), (3.20)

where αm,λ(h) = h−λ
mmα(h) and βm,−λ(h) = hλ

mmβ(h).
Let R(m)

λ (z, w|ᾱ, β̄) be a kernel of the operator R
(m)
12 ,[

R
(m)
12 ψ

]
(z, w) = �σ′ρ′

(
R(m)

λ (z, w|ᾱ, β̄), ψ(α, β)
)
.

Using property (3.14) one easily derives the defining equation for R(m)
λ (z, w|ᾱ, β̄)

L̃ᾱ
1 (u1, . . . , um, . . . uN)L̃

β̄

2 (v1, . . . , vm, . . . , vN)R(m)
λ (z, w|ᾱ, β̄)

= Lz
1(u1, . . . , vm, . . . , uN)Lw

2 (v1, . . . , um, . . . , vN)R(m)
λ (z, w|ᾱ, β̄), (3.21)

where λ = um − vm. We recall here that

L̃1(ui) = u −
∑
nm

enmẼ(1)
mn

and similarly for L̃2. Let us note that equation (3.21) coincides identically with equation (2.50)
whose solution is given by the function Km

λ,σ,ρ(z, w|ᾱ, β̄), equation (2.48). Since the
function Km

λ,σ,ρ(z, w|ᾱ, β̄) is an analytic function of z,w, ᾱ, β̄ in the vicinity of the point
z = w = α = β = 1 (zik = · · · = βik = 0) it defines an operator on the tensor product of
Verma modules V ⊗ V. Thus, we have proven the following statement.

Lemma 2. The operator R
(m)
12 (λ): V × V → V × V defined by the kernel

R(m)
λ,σρ(z, w|ᾱ, β̄) = Am

(
β̄ww−1zᾱ−1

z

)λ

mm
Iσ(z, α)Iρ(w, β), (3.22)

where Am is some constant, solves the RLL relation (3.19).
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As follows from equation (3.22) the operator R(m) depends both on the parameters σ and
ρ, and on the spectral parameter λ. We will display explicitly the dependence on a spectral
parameter only. It means that a product of two operators, for instance R

(m)
12 (μ)R

(m)
12 (λ), written

in an explicit form, turns into R
(m)
12 (μ|σ′, ρ′)R(m)

12 (λ|σ, ρ), where the parameters σ′, ρ′ are
determined by equation (3.20).

It is easy to see from equation (3.22) that matrix elements of the operator R
(m)
12 (λ)

(modulo the prefactor Am) are analytic functions of the spectral parameter λ. Moreover, they
are meromorphic functions in σ and ρ, which specify representations of the sl(N) algebra on
the space V ⊗ V. The position of the poles corresponds to the points of reducibility of the
representations πσ and πρ.

The normalization factor Am in (3.22) is, in general, an arbitrary function of λ, σ, ρ:
Am = Am(λ, σ, ρ). However, the operators R

(m)
ik satisfy the relations (2.38) only if the

functions Am obey some restrictions. They can easily be read off equations (2.38), for
instance,

Am(0, σ, ρ) = 1, Am(μ, σ′, ρ′)Am(λ, σ, ρ) = Am(μ + λ, σ, ρ) (3.23)

and so on. The simplest normalization which satisfies all the requirements is Am = 1.
Choosing another, SL(N, C) induced normalization, one can get rid of unessential prefactors
in some formulae for transfer matrices. In this normalization the factor Am reads

Am(u − v, σ, ρ) = fm(u − v)

m−1∏
k=1

�(uk − vm + 1)

�(uk − um + 1)

N∏
j=m+1

�(um − vj + 1)

�(vm − vj + 1)
, (3.24)

where fm(λ) = 1 for even m and fm(λ) = eiπλ for odd m. We will assume that the
normalization factor possesses all necessary properties. Its explicit form will be irrelevant for
further discussion.

Let us prove that the operators R
(m)
ik (λ) satisfy the relations (2.38). The first of them,

R
(m)
ik (0) = I, follows directly from equation (3.22). The second one, (2.38b), requires a

special analysis and will be discussed in appendix B.
Going on to the proof of the relations (2.38c), (2.38d) and (2.38e) we note that the product

of the operators R(m) on the lhs and rhs of the corresponding equations results in the same
permutations of the spectral parameters uk, vk, wk in the product of two (three) Lax operators.
Let us show that two operators which result in the same permutation of the spectral parameters
in a product of Lax operators coincide up to a normalization. Namely, if

A(u − v)L1(u)L2(v) = L′
1(u

′)L′
2(v

′)A(u − v),
(3.25)

B(u − v)L1(u)L2(v) = L′
1(u

′)L′
2(v

′)B(u − v),

then A(λ) = cB(λ). It follows from equations (3.25) that the operator C(λ) = B−1(λ)A(λ)

commutes with the product of Lax operators

C(u − v)L1(u)L2(v) = L1(u)L2(v)C(u − v). (3.26)

We will assume that the operators A(λ) and B(λ) and, hence the operator C(λ), are analytic
operators which means that their matrix elements are analytic (meromorphic) functions of λ.
The following lemma states that an operator with such properties is a multiple of the unit
operator.

Lemma 3. Let π(1) and π(2) be irreducible highest weight representations of the sl(N) algebra
on the spaces V1 and V2. If an analytic operator A(λ) : V1 ⊗ V2 → V1 ⊗ V2 commutes with
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a product of Lax operators

A(u − v)L1(u)L2(v) = L1(u)L2(v)A(u − v), (3.27)

then A(λ) = a(λ)I.

Proof. It follows from (3.27) that[
A(λ),E

(1)
ki (λ)

] = [
A(λ),E

(2)
ki (λ)

] = 0, (3.28)

where

E
(1)
ki (λ) = E

(1)
ki − 1

λ

∑
m

E
(2)
kmE

(1)
mi , E

(2)
ki (λ) = E

(2)
ki +

1

λ

∑
m

E
(2)
kmE

(1)
mi . (3.29)

The space V ⊗ V can be decomposed into the direct sum of invariant subspaces of the Cartan
generators, V⊗V = ∑

h Vh, dim Vh = Nh < ∞. Since
[
E

(1)
kk +E

(2)
kk , A(u)

] = 0, the subspace
Vh is an invariant subspace of the operator A(u). Let eh

n, n = 1, . . . , Nh, be a basis in the
subspace Vh. Since the representations π(1), π(2) are irreducible, the basis vectors eh

n are given
by linear combinations of the vectors∏

k>i

(
E

(1)
ki

)nki
∏
j>m

(
E

(2)
jm

)njm
υ0,

where υ0 is the highest weight vector, υ0 = 1. So we write eh
n = eh

n(E
(1), E(2)). Now let us

consider a set of the vectors eh
n(λ) = eh

n(E
(1)(λ), E(2)(λ)). It follows from equation (3.29)

that for a sufficiently large λ, the vectors eh
n(λ) = eh

n + O(1/λ), n = 1, . . . , Nh, are linearly
independent. Hence they form a basis in the subspace Vh. By virtue of equation (3.28) one
finds that A(λ)eh

n(λ) = a(λ)eh
n(λ), where a(λ) = A(λ)υ0. Thus, we have proven that

A(λ) = a(λ)I (3.30)

on an arbitrary subspace Vh in some region of λ. Due to assumed analyticity equation (3.30)
is valid for an arbitrary λ. Therefore equation (3.30) holds for the whole space V1 ⊗ V2. �

It is clear that the proof of lemma 3 can easily be extended to the case of an arbitrary number
of Lax operators. Namely, if an analytic operator A(λ1, λ2, λM−1) satisfies the equation

A(λi)L1(u)L2(u + λ1) · · · LM(u + λM−1) = L1(u)L2(u + λ1) · · · LM(u + λM−1)A(λi),

(3.31)

then A(λi) ∼ I. As was explained earlier this result implies that the lhs and rhs of equations
(2.38c), (2.38d) and (2.38e) are equal to each other up to some factor, �. It can easily be
checked by examining the action of the operators on the highest weight vector, υ0 = 1, that
� = 1. We also note here that lemma implies the uniqueness of the solution of the RLL
relation (3.19).

The commutation relations (2.38b), (2.40) for the operators R(m) are vital for our analysis
of transfer matrices, see section 4. The proof of these relations makes use of the explicit form
of the factorizing operators, equation (3.22), and the invariance property of the bilinear form
�σ . First of all, we prove the following lemma.

Lemma 4. Let g ∈ SL(N) and �k(g) �= 0, k = 1, . . . , N − 1. Then

�σ(T̃ −σ(g−1)ēm, en) = �σ(ēm, T σ(g)en). (3.32)

Here en(z) and ēm(w) = (em(w))∗ are basis vectors in the spaces V,�V (see equation (3.5)).
The transformations T σ(g), T̃ −σ(g−1) are defined by equations (2.1), (2.19).
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Proof. Since �k(g) �= 0 the functions T σ(g)en(z) and T̃ −σ(g−1)ēm(z) are (anti)holomorphic
functions in the vicinity of the point z = 1 (zik = 0)

[T α(g)en](z) =
∑

k

Aknek(z), [T̃ α(g−1)em](z̄) =
∑

k

ek(z)Bmk. (3.33)

The matrices A and B satisfy the following relation:

(�−1B)nm = (A�−1)nm, (3.34)

which follows immediately from the identity for the reproducing kernel,[
T σ

z (g)Iσ
]
(z, w) = [

T̃ −σ
w (g−1)Iσ

]
(z, w),

(see equation (2.22)). Inserting (3.33) into (3.32) one obtains that the latter reduces to equation
(3.34). �

Further if both functions Q(z̄) and [T̃ −σ(g−1)Q](z̄) are analytic at z = 1 then one obtains

�σ(T̃ −σ(g−1)Q, em) =
∑

n

qn�σ(ēn, T
σ(g)em), (3.35)

where Q(z̄) = ∑
n qnen(z).

Lemma 5. If the kernel of an operator A has the form

A(z, α) = r(z, ᾱz)Iσ(z, α), (3.36)

where the function r(z, ᾱ) does not depend on the variables:

(a) α∗
nj , j < m or

(b) (α−1)∗jn, j > m then

(i) A commutes with zkj , j < m,Azkj = zkjA ,
(ii) A commutes with z−1

jk , j > m, Az−1
jk = z−1

jk A.

Proof. The proofs for cases (a) and (b) are similar, so we consider case (a) only. Since the
function r(z, ᾱ) depends only on a part of the variables α∗

nj its expansion in a power series

r(z, ᾱ) =
∑
ij

rij ei(z)ej (α) (3.37)

runs only over those basis vectors ēj which lie in the subspaces �Vh with the multi-index
h = (0, . . . , 0, hm, . . . , hN−1). Therefore, taking into account equation (3.7) one derives

�σ(r(z, ᾱ), P (α)) = �σ(r(z, ᾱ),�mP (α)), (3.38)

where �m is a projector to the subspace Vm = ∑
h=(0,...,0,hm,...,hN−1)

⊕Vh,

[�mP ](α) = P(α)|αkj =0,j<m. (3.39)

Noting that the kernel A(z, α) has the form T̃ −σ(z)r(z, ᾱ) and making use of equation (3.35)
one obtains

AP(z) = �σ(A(z, α), P (α)) = �σ(T̃ −σ(z)r(z, ᾱ), P (α))

=
∑
ij

rij ei(z)�σ(ej (α), T σ(z−1)P (α)) =
∑
ij

rij ei(z)�σ(ej (α),�mT σ(z−1)P (α)).

(3.40)

Taking P(z) = zkj P̃ (z), j < m and noting that

�mT σ(z−1)αkj P̃ (α) = zkj�mT σ(z−1)P̃ (α)

we obtain the necessary result. �
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The commutation relations (2.39) for the operators R
(m)
12 (λ) are a simple corollary of this

lemma. The proof of the two remaining relations (2.40) and (2.38b) is given in appendix B.
Finally, with the help of the relations (2.39) one can check that the operator R(m)(λ)

depends only on a part of the parameters σ and ρ characterizing the Verma modules, namely

R(m)
σρ (λ) = R(m)(λ, σ12, . . . , σm−1m, ρmm+1, . . . , ρN−1N). (3.41)

Proving the properties (2.38), (2.39) and (2.40) we have assumed that the representations
of the sl(N) algebra the factorizing operators act on are irreducible. This condition can be
relaxed. Indeed, all relations in question give rise (and are equivalent) to certain equations for
matrix elements of the factorizing operators R(m). The matrix elements depend analytically
on the parameters specifying the representations. Thus these equations hold for arbitrary
parameters and, hence, for reducible representations.

On the basis of the obtained results we conclude that the following theorem holds:

Theorem 1. An sl(N) invariant solution of the YBE on a tensor product of generic highest
weight representations of the sl(N) algebra can be represented in the factorized form

R12(u − v) = P12R
(1)
12 (u1 − v1)R

(2)
12 (u2 − v2) · · · R(N)

12 (uN − vN). (3.42)

Here ui = u−σi, vi = v −ρi . The parameters σ, ρ specify the representations π(1) and π(2),
respectively. P12 is a permutation operator. The factorizing operators R

(m)
12 (λ) are given by

equation (3.22) and satisfy (at proper normalization) the relations (2.38), (2.39) and (2.40).

The Verma module is irreducible if none of the differences, σi − σk, k > i, is a positive
integer. In other cases there exists an (in)finite-dimensional invariant subspace υ, υ ⊂ V. Let
π ′ be a restriction of πσ onto the subspace υ, π ′ = πσ|υ , and π ′′ is a representation induced
on the factor space V/υ. It follows from the RLL relation that the space υ⊗V (we assume that
the representation πρ is irreducible) is an invariant subspace of the operator R12. Therefore
the R-matrix has a block-triangular form

R12(u) =
(
R′

12(u) �

0 R′′
12(u)

)
, (3.43)

where the diagonal blocks, R′
12(u) = R12(u)|υ⊗V and R′′

12(u) = R12(u)|(V/υ)⊗V, define
new R matrices on the spaces υ ⊗ V and (V/υ) ⊗ V, respectively. Thus one can extract
R-matrices for arbitrary (non-generic) representations of the sl(N) algebra by studying the
R-matrix (3.42) for reducible generic representations.

Let us put um − vm = λ and uk = vk, k �= m in equation (3.42). These constraints mean
that the characters α and β in the tensor product πα ⊗ πβ are related. Namely, one easily
finds that β(h) = αm,λ(h) = h−λ

mmα(h). Taking into account that R
(k)
12 (0) = I one derives

R(m)
12 (λ) ≡ P12R

(m)
12 (λ) = R12

(
λ

N

) ∣∣∣∣
β=αm,λ

. (3.44)

Constructing transfer matrices one refers to spaces in the tensor product V ⊗ V as a quantum
(first) and auxiliary (second) spaces, respectively. Clearly, the operator R(m)

12 (λ) is completely
fixed by the spectral parameter λ and the representation πα(≡ πσ) on the quantum space.
Making use of equation (3.41) one gets

R(m)
12 (λ) = P12R

(m)(λ, σ12, . . . , σm−1m, λ + σmm+1, . . . , λ + σN−1N). (3.45)

In the following section we study the properties of the operators defined as the trace of a
monodromy matrices constructed from the operators R(m)

12 (λ).
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4. Transfer matrices and Baxter Q-operators

4.1. Transfer matrices

In this section we discuss properties of transfer matrices for generic sl(N) spin chains. A
transfer matrix is defined as a trace of a monodromy matrix which is given by the product
of R-operators. Since we consider infinite-dimensional representations of the sl(N) algebra
a convergence of the trace is not guaranteed. Except for the N = 2 case, in order to ensure
the finiteness of traces one has to introduce a regulator (boundary operator) [15, 19, 24, 25]
which breaks sl(N) symmetry down to its diagonal subgroup. Namely, let us define a new
R-operator by

R12(u, τ ) ≡ R12(u, τ1, . . . , τN−1) =
N−1∏
p=1

τ
(H2)p
p R12(u) ≡ τH2R12(u). (4.1)

The operators Hp are defined in (3.3) and the index 2 (H2) refers to the space the operator acts
on. The operators R12(u, τ ) obey the YBE

R12(u, τ )R13(v, τ )R23(v − u) = R23(v − u)R13(v, τ )R12(u, τ ). (4.2)

We define a transfer matrix by8

Tρ(u, τ ) = trρ{R10(u, τ ) . . .RL0(u, τ )}. (4.3)

The index ρ specifies a representation of sl(N) algebra, πρ(= πβ), on the auxiliary space.
We will also label a transfer matrix by the highest weight of the representation in the auxiliary
space λ = (λ1, . . . , λN−1), λk = 1 − ρk + ρk+1, i.e.

Tλ(u, τ ) ≡ Tβ(u, τ ) ≡ Tρ(u, τ ). (4.4)

Let us note that for τ < 1 the factor τH2 improves a convergence of the trace since the
eigenvalues of the operators Hp, p = 1, . . . , N − 1 (see equation (3.3)) are positive integers.
Thus, provided that the trace exists, equation (4.3) defines an operator on the tensor product of
Verma modules V1 ⊗· · ·⊗VL. The transfer matrices form a commutative family of operators[

Tρ1
(u, τ ), Tρ2

(v, τ )
] = 0. (4.5)

It is easy to see that the transfer matrix Tρ(u, τ ) commutes also with the total Cartan generators,
namely [Tρ(u, τ ),Hp] = 0, p = 1, . . . , N − 1, where H = H(1) + · · · + H(L).

We will consider homogeneous spin chains only, i.e. assume that the representations of
sl(N) algebra on the quantum space at each site are equivalent, πσ1 = πσ2 = · · · = πσL ≡ πσ.

4.2. Baxter Q-operators

Let us define special transfer matrices, the Baxter Q-operators, constructed from the operators
R(m), (3.44). Namely, similarly to (4.1) we put

R(m)
12 (u, τ ) = τH2R(m)

12 (u) (4.6)

and

Qk(u + σk, τ ) = tr0
{
R(k)

10 (u, τ ) . . .R(k)
L0(u, τ )

}
. (4.7)

8 In [24] the transfer matrix with an insertion of a boundary operator was defined as follows: T̃ (u, τ ) =
trρ(τH0 R10(u) · · · RL0(u)). It is easy to check that these two definitions are essentially the same T (u, τ) =
τAT̃ (u, τL)τ−A, where A = ∑L−1

k=1 (L − k)Hk .
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Taking into account equation (3.44) one finds that Qk(u) is given by the transfer matrix for a
special choice of the auxiliary space

Qk(u + σk, τ ) = Tαk,u
(u/N, τ) = Tλ−u(ek−ek−1)(u/N, τ), (4.8)

where the vector ek is defined by (ek)n = δkn, and λ is the highest weight of the representation
in the quantum space, λk = σk+1 − σk + 1.

The Baxter operators Qk(u, τ ) act on the quantum space of a model and commute with
each other

[Qk(u, τ ),Qm(v, τ )] = 0. (4.9)

One easily finds that the Baxter operators satisfy the following normalization condition:

Qk(σk, τ ) = PτH , (4.10)

where H = H(1) + · · · + H(L) and P is the operator of cyclic permutation,

Pf (z1, . . . , zL) = f (zL, z1, . . . , zL−1). (4.11)

Let us note also that [Qk(u),P] = [Qk(u),H ] = 0.
Now we are going to prove that equation (4.7) gives rise to a well-defined operator on the

quantum space. To this end it is necessary to show that the trace over an infinite-dimensional
auxiliary space converges. Let Qk(u, τ ) be a monodromy matrix,

Qk(u, τ ) = R(k)
10 (u, τ ) . . .R(k)

L0(u, τ ), (4.12)

and [Qk(u, τ )]
m′

1,...,m
′
L,n′

m1,...,mL,n its matrix elements in the basis E �m,n,

E �m,n = en(w)

L∏
k=1

emk
(z(k)),

Qk(uτ)E �m,n = [Qk(u, τ )]
m′

1,...,m
′
L,n′

m1,...,mL,n E �m′,n′ .

Here we keep the variable w for the auxiliary space and z(k) for the quantum space in the kth
site. The basis vectors en(z) are defined by equation (3.5).

The trace of the monodromy matrix Qk(u, τ ) written explicitely takes the form∑
n=(n1,n2,...,nL)

[
R(k)

10

]m′
1nL

m1,n1

[
R(k)

20

]m′
2n1

m2,n2
· · · [R(k)

L0

]m′
LnL−1

mL,nL
. (4.13)

We recall that each summation index, nk is multi-index, nk = {(nk)ij , i > j}. Let us introduce
notations, n = (n1, n2, . . . , nL), and nij = ((n1)ij , (n2)ij , . . . , (nL)ij ). First of all, we show
that all summation indices nij except nk+1k, . . . ,nNk vary in a finite range, while the indices
nk+1k, . . . ,nNk can be arbitrarily large. To this end we examine an action of the operator R(k)

l0
on the basis vector eml

(zl) ⊗ enl
(w). For brevity we skip the index l, i.e. zl → z,ml → m,

etc. Then taking into account equations (2.39) one finds

R(k)
l0 em(z) ⊗ en(w) = Pzw

⎛⎝ ∏
j<k,i

w
nij

ij

⎞⎠ R
(k)
l0

⎛⎝em(z) ⊗
∏

i>j�k

w
nij

ij

⎞⎠
=

⎛⎝ ∏
j<k,i

z
nij

ij

⎞⎠R(k)
l0

⎛⎝em(z) ⊗
∏

i>j�k

w
nij

ij

⎞⎠ . (4.14)

From here one concludes that the indices nij for j < k are restricted from above by
m′

ij , nij � m′
ij , i.e. nij � m′

ij for j < k.

20



J. Phys. A: Math. Theor. 42 (2009) 075204 S É Derkachov and A N Manashov

To prove that nij is restricted for j > k we use the relation (2.40). It takes the form

Dw
p+1,pR

(k)
l0 = R(k)

l0 Dz
p+1,p, p > k. (4.15)

Since for a given m the operators
(
Dz

p+1,p

)Mp , where Mp is some number, nullify the

vector em(z) one derives that
(
Dw

p+1,p

)Mp
Emn(z,w) = 0 for p > k, where Emn(z,w) =

R(k)
l0 (em(z) ⊗ en(w)). The function Emn satisfying these conditions is a polynomial of finite

degree (which depends on Mp) in wip, p > k (see [44, chapter X]) hence, nij � M ′
ij , for

j > k.
Thus we have shown that the summation over np = {(np)ij }, p = 1, . . . , L in (4.13)

goes in a finite range for all (np)ij except (np)k+1,k, . . . , (np)N,k . Let us also note that all
summation indices, (np)ik are of the same order, the difference (np)ik − (nL)ik = (qp)ik being
finite when (nL)ik goes to infinity. It will be shown in appendix C that for the matrix element
[R(k)

l0 (u)]m
′n′

mn in the limit nik → ∞, i = k + 1, . . . , N , all other variables being fixed, the
following estimate holds:∣∣[R(k)

l0 (u)
]m′n′

mn

∣∣ < C(u)h
ak+1
k+1 · · · haN

N , (4.16)

where hk = ∑N
i=k+1 nik + 1 and C(u), ak, . . . , aN are some constants, which depends on

σ,mij , . . .. Since τH2 ∼ τ
hk

k · · · τhN−1
N−1 the estimate (4.16) ensures that the series in (4.13)

converges absolutely τ < 1. Thus we have proven that equation (4.7) provides a definition of
an operator on the tensor product of Verma modules.

Let us note that the trace for the operator QN is given by a finite sum. Therefore, the
Baxter operator QN(u, τ ) has a finite limit at τ → 1. The operators Qk(u, τ ), k < N , could be
singular in this limit. However, as it follows from the above discussion, the operator Qk(u, τ )

has a finite limit at τi → 1, i �= k and τk < 1 is fixed.

4.3. Factorized form of transfer matrix

The transfer matrix (4.3) for a chosen quantum space depends on N complex parameters:
the spectral parameter u and N − 1 parameters, ρk − ρk+1, k = 1, . . . , N − 1, specifying
the representation on auxiliary space. The Baxter Q-operators depend only on a spectral
parameter. The number of independent parameters in the transfer matrix matches the number
of spectral parameters in a product of N Baxter operators. Below we show that the following
statement holds:

Theorem 2. The transfer matrix Tρ(u, τ ), τ < 1, is factorized into the product of the Baxter
Q-operators

Tρ(u, τ ) = Q1(u + ρ1, τ )(PτH )−1Q2(u + ρ2, τ ) · · · (PτH )−1QN(u + ρN, τ), (4.17)

where H = H(1) + · · · + H(L).

Proof. The proof of (4.17) relies on the commutation relations (2.38c). Let Tk(u, τ ) be the
transfer matrix for a special choice of the auxiliary space

βk =
k∏

j=1

�
1−ρjj+1

j �
1−ρk+σk−u

k

N−1∏
j=k+1

�
1−σjj+1

j ,

where σ = (σ1, . . . , σN) are the parameters specifying the representation on the quantum
space.

The transfer matrix Tk(u, τ ) can be represented in the form

Tk(u, τ ) = tr βk
R(1k)

10 (u, τ ) · · ·R(1k)
L0 (u, τ ). (4.18)
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An m
nm =

n n

m m

A

Figure 1. The graphical representation for the matrix element of an operator.

A B

m

n n

m

Figure 2. The graphical representation for the sum
∑

n′,m′,m′′ An′′m′′′
n′m′′ [τH ]m

′′
m′ Bn′m′

nm .

The reduced operator R(1k) is defined as follows:

R(1k)
j0 (u − v, τ ) = τH0Pj0R

(1)
j0 (u1 − v1) · · · R(k)

j0 (uk − vk) ≡ τH0Pj0R
(1k)
j0 (u − v, τ ), (4.19)

where uj = u − σj , vj = v − ρj . Let us show that

Tk(u, τ ) = Tk−1(u, τ )(PτH )−1Qk(u + ρk, τ ). (4.20)

Obviously, the factorization formula (4.17) is a simple corollary of this result. To prove
equation (4.20) let us put Aj = R

(1k−1)
j0 (u − v) and Bj = R

(k)
j0 (uk − vk), i.e.

R(1k)
j0 (u − v, τ ) = τH0Pj0AjBj . (4.21)

Matrix elements of the operators on both sides of equation (4.20) are given by some sums
and one has to show that they are equal. To this end it is convenient to use a graphical
representation for the sums. Let us denote the matrix element An′m′

nm of the operator Aj(Bj )

by a box with four legs as shown in figure 1. The line connecting two boxes will imply a
summation over the corresponding index. The operators τH (τ−H ) will be denoted by an
insertion of black (white) circle in the corresponding line. As an example, we have given the
diagrammatic representation for the sum

∑
n′,m′,m′′ A

n′′m′′′
n′m′′ [τH ]m

′′
m′ Bn′m′

nm in figure 2.
The graphical representations for the rhs and lhs of equation (4.20) are shown in figures 3

and 4, respectively. To obtain the diagram shown in figure 3 we have used the commutativity of
the Baxter operators with the total diagonal generators, H = H(1) + · · ·+H(L) and represented
the rhs of equation (4.20) as Tk−1(u, τ )P−1Qk(u + ρk, τ )τ−H .

We have already shown that the trace in equation (4.7) converges absolutely for τ < 1.
Let us assume now that the factorization formula (4.20) holds for the transfer matrices
Tk(u, ρ), k = 2, . . . , p − 1 and that the traces for Tk(u, ρ), k � p − 1 converge absolutely.
Then it can be shown that equation (4.20) holds for k = p and the corresponding trace
converges absolutely. First of all, let us note that the summation over indices k1, . . . , kL in∑

k1,...,kL

[Tk−1]
m′

1,...,m
′
L

k1,...,kL
[P−1Qkτ

−H ]k1,...,kL

m1,...,mL

goes in a finite range. The blocks Aj and Bj+1 can be interchanged with the help of the
commutation relation (2.38c) whose graphical form is shown in figure 5. Using this identity
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A3

B3

A1 B1

A2 B2

m1

m2

m3

m3

m1

m2

Figure 3. The graphical representation for the reduced transfer matrix Tk , the rhs of equation (4.18).

A1 B1

A2 B2

A3 B3

m1

m2

m3

m1

m2

m3

Figure 4. The graphical representation for the reduced transfer matrix Tk , the lhs of equation (4.18).

BjBj =

m1 m1

m2 m2

m3 m3

Bj Bj

Aj+1 Aj+1

m3 m3

m1 m1

m2 m2=

Figure 5. The graphical representation of the permutation identity (2.38c).

and taking into account that τHj +H0Bjτ
−Hj = Bjτ

H0

BjBj =

one can transform the sum depicted by the diagram in figure 3 into the sum in figure 4.
It is clear that the trace for Tk will converge absolutely, if it is the case for Tk−1 and

Qk . Since T1(u, τ ) = Q1(u + ρ1, τ ) the trace for T1 converges absolutely. Therefore the
factorization formula (4.20) and the absolute convergence of the traces for Tk for k > 1 will
follow by induction over k. This completes the proof of the theorem. �
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4.4. Fusion relations

It was long known that the transfer matrices satisfy a set of functional relations which are
usually referred to as fusion relations. The fusion relations for the compact spin chains were
thoroughly studied in the literature, see e.g. [45–51]. Below we show how the representation
(4.17) can be used to obtain some functional relations for the transfer matrices.

Let us consider the product of two transfer matrices, Tρ(u, τ ) and Tω(v, τ ). Both of them
can be represented in the factorized form (4.17). Since all operators in (4.17) commute with
each other one can interchange the Baxter operators Qk(u + ρk) and Qk(v + ωk). The new
products can be identified as the transfer matrices, e.g.

(PτH)−(N−1)Qk(v + ωk)
∏
j �=k

Qj (u + ρj ) = Tρ′(u′, τ ), (4.22)

where u′ = u−δ/N, ρ ′
j = ρj +δ/N , for j �= k and ρ ′

k = ρk−δ (1 − 1/N) , δ = u−v+ρk−ωk .
Therefore one obtains the following relations:

Tρ(u, τ )Tω(v, τ ) = Tρ′(u − δ/N, τ)Tω′(v + δ/N, τ), (4.23)

where ω′
j = ωj − δ/N, j �= q and ω′

k = ωk + δ(1 − 1/N). Changing the notation
Tρ(u, τ ) → Tλ(u, τ ) = Tλ1,...,λN−1(u, τ ) (Tω(v, τ ) → Tμ(v, τ )) where λ (μ) is the highest
weight in the auxiliary space, λk = ρk+1 − ρk + 1, one rewrites relation (4.23) in the form

Tλ(u, τ )Tμ(v, τ ) = Tλ−δk(ek−1−ek)(u − δk/N, τ)Tμ+δk(ek−1−ek)(v + δk/N, τ), (4.24)

where ek is (N − 1)-dimensional vector (ek)i = δik and

δk = u − v +
N−1∑
p=k

(μp − λp) +
1

N

N−1∑
p=1

p(μp − λp). (4.25)

The fusion relations (4.23), (4.24) remain valid for inhomogeneous spin chains.

4.5. Inhomogeneous spin chains

Let us explore modifications which appear in a general case of inhomogeneous spin chains
with impurities (for the sl(2) case see [35]). The transfer matrix is defined as

Tρ(u, τ ) = trρ R10(u + ξ1, τ )R20(u + ξ2, τ ) · · ·RL0(u + ξL, τ ), (4.26)

where {ξ1, . . . , ξL} are impurity parameters and the quantum space in the kth site carries the
representation π(k) of the sl(N) algebra.

As in the case of the homogeneous spin chain the transfer matrix (4.26) can be represented
in the form (4.17). However, properties of the factorizing Q-operators change drastically. First
of all, let us note that in the case of an inhomogeneous chain it is not possible to choose an
auxiliary space representation, πρ, such that the operators Rk

n0(u) map πρ ⊗ πσn onto itself,
simultaneously for all n. Therefore, the quantum numbers of the auxiliary spaces at different
sites are different.

Let us consider the monodromy matrix constructed from the operators R(k)
σj ρj

(u, τ )

Qk(u, τ ) = R(k)
σ1ρ1

(u + ζ1, τ ) · · ·R(k)
σLρL

(u + ζL, τ ), (4.27)

where σj and ρj are the quantum numbers of the quantum and auxiliary spaces at the j th site
and ζj are the impurities. In general, the monodromy matrix intertwines the representations
with different quantum numbers

Qk(u, τ )πρ ⊗ πσ1 ⊗ · · · ⊗ πσL = π ρ̃ ⊗ π σ̃1 ⊗ · · · ⊗ π σ̃LQk(u, τ ), (4.28)
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where we put ρ ≡ ρL. To be precise, for τ �= 1 the above relation holds only for the generators
from the Cartan subalgebra. Provided that the representations πρ and π ρ̃ coincide (ρ = ρ̃),
the trace of the monodromy matrix Qk(u, τ ) = tr Qk(u, τ ) intertwines the Cartan generators
of the representations πσ1 ⊗ · · · ⊗ πσL and π σ̃1 ⊗ · · · ⊗ π σ̃L . The condition ρ = ρ̃ fixes the
quantum numbers, ρn, of all auxiliary spaces in (4.27). We recall that

Rk
10(u) : πα ⊗ πβ → παk,u ⊗ πβk,−u ,

with αk,u(h) = h−u
kk α(h), βk,−u(h) = hu

kkβ(h) (correspondingly, R(k)
10 (u) = P12R

k
10(u) maps

πα ⊗ πβ → πβk,−u ⊗ παk,u ). Thus the parameter ρn in equation (4.27) is determined by the
characters (αn−1)k,u+ζn−1 . In its turn the quantum numbers σ̃n, equation (4.28), correspond to
the character

α̃n(h) = h
ζn−ζn+1
kk αn+1(h).

Let us note that the character α̃n(h) does not depend on the spectral parameter u and is
determined by the impurity parameters ζ only. Since one can always assume that

∑
ζk = 0

the operator Qk(u, τ ) is uniquely determined by two sets of parameters, � = (σ1, . . . , σL)

and �̃ = (σ̃1, . . . , σ̃L),

Qk(u, τ |ζ,�) = Qk(u, τ |�̃,�). (4.29)

We will not display spins �, �̃ assuming always that the operators are multiplied in a covariant
way

Qk(u, τ )Qj (v, τ ) = Qk(u, τ |˜̃�, �̃)Qj (v, τ |�̃,�). (4.30)

Having put the inpurity parameters in equation (4.27) to ζj = ξj − (σj )k we, finally,
define the operator Qk as follows:

Qk(u, τ ) = trR(k)
σ1ρ1

(u + ξ1 − (σ1)k, τ ) · · ·R(k)
σLρL

(u + ξL − (σL)k, τ ), (4.31)

where the representation πρn ≡ πβn on the auxiliary space at the nth site corresponds to the
character βn = (αn−1)k,u+ξn−1−(σn−1)k . Quite similar to a homogeneous spin chain one can show
that the transfer matrix for an inhomogeneous spin chain can be represented in the factorized
form

Tρ(u, τ ) = τ−(N−1)H Q1(u + ρ1, τ )P−1Q2(u + ρ2, τ )P−1 · · ·P−1QN(u + ρN, τ). (4.32)

The operators Qk(u, τ ) satisfy the following relations9,

Qk(u, τ )Qk(v, τ ) = Qk(v, τ )Qk(u, τ ), (4.33)

Qk(u, τ )P−1Qn(v, τ ) = Qn(v, τ )P−1Qk(u, τ ), for k �= n, (4.34)

which follow from the properties of the factorizing operators, equations (2.38c). These
relations allow us to rearrange the Qk operators in the product of T matrices in an arbitrary
order. However, the operator Qk alone cannot be considered as a ‘good’ operator on the
quantum space of the model. Only the product of all operators Qk has the necessary invariance
properties. Therefore, it is reasonable to identify the Baxter Qk-operator with the transfer
matrix (4.32), where only one operator Qk depends on a spectral parameter. Namely, let
w = (w1, . . . , wN) and μ = (μ1, . . . , μN−1), where μk = wk+1 − wk + 1. We define the
Baxter operator as follows:

Q(w)
k (u + wk, τ) = Tμ−u(ek−ek−1)

( u

N
, τ

)
= τ−(N−1)H Q1(w1, τ )P−1 · · · Qk(wk + u, τ)P−1 · · ·P−1QN(wN, τ). (4.35)

9 It should be noted that, despite appearance, equation (4.33) is not a commutation relation. Indeed, if written
explicitly equation (4.33) becomes Qk(u, τ |˜̃�, �̃)Qk(v, τ |�̃,�) = Qk(v, τ |˜̃�, �′)Qk(u, τ |�′, �).
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The definition is not unique in a sense that the Baxter operator depends on the arbitrary
parameters w (μ). In the case of the homogeneous spin chain there is a distinguished choice,
w = σ, which ensures that Qk(σk) = PτH . However, it is clear that other variants are also
feasible10.

New operators, Q(w)
k (u, τ ), acting on the quantum space of the model, form a commutative

operator family. The normalization condition (4.10) which holds in a homogeneous case is
now replaced by

Q(w)
k (wk, τ ) = Tw(0, τ ) ≡ Zw. (4.36)

Using the commutation relations (4.33) it is straightforward to derive that the operators
Q(w)

k (u, τ ) possess all the properties which hold in a homogeneous case. Namely, the generic
transfer matrix factorizes into the product of Baxter operators

Tρ(u, τ ) = Z1−N
w Q(w)

1 (u + ρ1, τ ) · · ·Q(w)
N (u + ρN, τ). (4.37)

The fusion relation for the generic transfer matrices has exactly the same form as in the
homogeneous case, see equation (4.24).

5. Summary

In this paper we have developed an approach which allows us to construct the Baxter Q-
operators for a generic sl(N) spin chain. We have proven that the sl(N) invariant R-operator
on a tensor product of Verma modules can be represented in a factorized form. The factorizing
operators have an extremely simple form (3.22) and possess a number of remarkable properties
(2.38c). For the homogeneous spin chains we have defined the Baxter Q-operators as the trace
of the monodromy matrix constructed of the factorizing operators. We have shown that the
Baxter Q-operators can be identified with the transfer matrices for the special choice of the
auxiliary space. This definition of the Baxter Q-operators (see equation (4.35)) holds for
inhomogeneous spin chains with impurities as well.

Many of the properties of the Baxter Q-operators and transfer matrices follow readily
from the properties of the factorizing operators, equations (2.38c), (2.39). In particular, we
have shown that the generic transfer matrix is factorized into the product of N different Baxter
Q-operators. This representation for the transfer matrix together with the commutativity of the
Baxter Q-operators results immediately in certain functional relations for transfer matrices.

Another type of fusion relations involves the transfer matrices with a finite-dimensional
auxiliary space. We recall that the Verma module Vρ has an invariant finite-dimensional
submodule υρ if λk = ρk+1 − ρk + 1 = −nk � 0, k = 1, . . . , N − 1. (This representation
corresponds to the Young tableau specified by the partition {�1, �2, . . . , �N−1}, where
�k = ∑N−1

i=k ni is the length of the kth row in the tableau.) Let tρ(u, τ ) be a trace of the
monodromy matrix over such a finite-dimensional space

tρ(u, τ ) = trυρ
R10(u, τ ) · · ·RL0(u, τ ). (5.1)

Assuming that the normalization of the factorizing operators is chosen according to
equation (3.24) one can obtain the following determinant representation for the transfer
matrix (5.1):

tρ(u, τ ) = (PτH )−N+1

∣∣∣∣∣∣∣∣∣
Q1(u + ρ1, τ ) Q1(u + ρ2, τ ) . . . Q1(u + ρN, τ)

Q2(u + ρ1, τ ) Q2(u + ρ2, τ ) . . . Q2(u + ρN, τ)

...
...

. . .
...

QN(u + ρ1, τ ) QN(u + ρ2, τ ) . . . QN(u + ρN, τ)

∣∣∣∣∣∣∣∣∣ . (5.2)

10 The choice w �= σ could be useful for the analysis of the homogeneous spin chains with a finite-dimensional
quantum space.
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The proof of (5.2) is based on the Berstein–Gel’fand–Gel’fand resolution of the finite-
dimensional modules and will be given elsewhere [52]. Equation (5.2) gives rise to a
variety of functional relations involving the Baxter Q-operators and (in)finite-dimensional
transfer matrices. The simplest of them are the so-called Wronskian relation and Baxter
equation. One easily derives from equation (5.2) the Wronskian relation, which in λ notation,
tρ(u, τ ) → tλ(u, τ ) = tλ1...λN−1(u, τ ) reads

(PτH )N−1t0...0(u, τ ) = det |Qk(u + N − j, τ )|k,j=1,...,N , (5.3)

where the transfer matrix t0...0(u, τ ) is proportional to the unit operator on quantum space.
Let us put

t0(u, τ ) = tN (u, τ ) = t0···0(u, τ ) and tk(u, τ ) = t0...−1k ...0(u, τ ). (5.4)

That is the transfer matrix tk(u, τ ) is given by a trace of a monodromy matrix over a finite-
dimensional auxiliary space which corresponds to the Young tableu with one column and k
rows. Following the lines of [37] one can derive the self-consistency equation (Baxter equation)
involving the BaxterQ-operators and the finite-dimensional transfer matrices, tk(u, τ ). It takes
the form of the Nth order difference equation

N∑
k=0

(−1)ktk(u + k/N, τ)Qj (u + N − k, τ ) = 0, (5.5)

which, due to equation (4.8), can be considered as a fusion relation involving the finite- and
infinite-dimensional transfer matrices of a special type. Equation (5.5) is a generalization of
the standard sl(2)T –Q relation.

Thus the operators Qk(u) possess the following properties:

• form a commutative family [Qk(u),Qj (v)] = 0;
• commute with all transfer matrices [Qk(u), Tρ(v)] = 0;
• satisfy the Nth order difference equation (5.5) involving the finite-dimensional transfer

matrices.

The operators with such properties are usually referred to as the Baxter Q-operators, which
justifies using this name in the previous sections.

Let us note that relations similar to (5.2), (5.3), (5.5) hold for the spin chains with the
affine Uq(ŝl(n)) symmetry algebra [19, 30, 53] (see also [54, 55]).

It follows from equations (4.17), (5.2) that the Baxter operators encode the full information
about the system. Provided that the eigenvalues of the Baxter operators are known one can
restore eigenvalues of all transfer matrices. For low-rank symmetry models knowledge of the
eigenvalues of the Baxter operators is sufficient to restore the wavefunction of the system.
This can be done with the help of the separation of variables method developed by Sklyanin
[4]. (Applications for the specific models can be found in [9, 20, 23, 56–59].)

The Hamiltonian of the system is defined as a logarithmic derivative of the transfer matrix
with the same representation in the quantum and auxiliary space. It can be represented as the
sum of pairwise Hamiltonians

H = d

du
log Tσ(u, τ )

∣∣∣∣
u=0

=
L∑

k=1

τHkHkk+1τ
−Hk , (5.6)

where

Hkk+1 = R−1
kk+1(0)

d

du
Rkk+1(u)

∣∣
u=0. (5.7)
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Using equations (3.42) and (3.22) one easily finds the following expression for the kernel of
the pairwise Hamiltonian (5.7):

H(z, w|αβ) = log

(
N∏

m=1

(
β̄ww−1zᾱ−1

z

)
mm

)
Iσ(z, α)Iσ(w, β). (5.8)

Let us note that for the sl(2) case the argument of the logarithmic function turns into the
invariant ratio (1 + zβ̄)(1 + wᾱ)/((1 + zᾱ)(1 + wβ̄)). (Here z = z21, w = w21, etc.) The
eigenvalues of the Hamiltonian (5.6) can be expressed in terms of the eigenvalues of the
Baxter operators as follows:

E =
L∑

k=1

d

du
logQk(u + σk)

∣∣∣∣
u=0

. (5.9)

For a generic representation of the sl(N) algebra it is not possible to define an invariant
scalar product and the Hamiltonian (5.6) is not Hermitian in general. Of special interest is a
situation when the Verma modules possess an invariant submodule which admits an invariant
scalar product. It could be a finite-dimensional subrepresentation which admits the SU(N)

invariant scalar product. There are also infinite-dimensional invariant subspaces which can be
equipped with invariant scalar products. They can be identified with unitary representations
of the noncompact group SU(m,N − m). The spin chain with the SU(2, 2) symmetry group,
for instance, is relevant for a description of the anomalous dimensions of a certain class of
composite operators in quantum chromodynamics [60]. We hope that the approach developed
here will be useful for an analysis of this type of models.
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Appendix A. The SL(N , C) factorizing operator in the coherent state basis

We start the proof of equation (2.45) with a remark that the coherent state (2.43) can be
represented in the form

�σρ(z, w|α, β) = T α(α−1)T β(β−1) · 1. (A.1)

Let us apply the operator R(m) to the function

	(z,w) =
∫

DαDβf (α, β)�σρ(z, w|α, β), (A.2)

where f (α, β) is a smooth function with a finite support.
The evaluation of R(m)	 is based on the identity

R(m)(λ)T α(α−1)T β(β−1) = W2[(w−1z)N1]λW1T
α(α−1)T β(β−1)

= T αm,λ (α−1)T βm,−λ (β−1)W2[(w−1βα−1z)N1]λW1, (A.3)

where

W1 =
⎛⎝←−

N−1∏
j=m

Vj (ρm,j+1)

⎞⎠ ⎛⎝−→
m−1∏
i=1

Ui (σim)

⎞⎠ , (A.4)
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W2 =
⎛⎝←−

m−1∏
i=1

Ui (λ − σim)

⎞⎠ ⎛⎝−→
N−1∏
j=m

Vj (λ − ρm,j+1)

⎞⎠ . (A.5)

To derive (A.3) one uses the following identities,

W1T
α(α−1)T β(β−1) = T α′

(α−1)T β′
(β−1)W1, (A.6)

[(w−1z)N1]λT α′
(α−1)T β′

(β−1) = T α′′
(α−1)T β′′

(β−1)[(w−1βα−1z)N1]λ, (A.7)

W2T
α′′

(α−1)T β′′
(β−1) = T αm,λ (α−1)T βm,−λ (β−1)W1, (A.8)

where α′′(h) = h−λ
11 α′(h), β′′(h) = hλ

NNβ′(h) and

α′(h) = h
σ1m

11

m∏
k=2

h
−σk−1,k

kk α(h), β′(h) = h
−ρmN

NN

N−1∏
k=n

h
ρk,k+1

kk β(h). (A.9)

The identities (A.6) and (A.8) follow directly from the intertwining relation (2.37). To derive
(A.7) it is sufficient to note(
w−1

β βα−1zα

)
N1 = (

dw,ββww−1zα−1
z d−1

z,α

)
N1 = (dw,β)NN(w−1z)N1

(
d−1

z,α

)
11, (A.10)

where we recall that α · z = zαdz,ααz.
Let us now calculate W2[(w−1βα−1z)N1]λW1. To this end one can use the integral

representation for the intertwining operators (2.35). Let us show that⎛⎝−→
N−1∏
j=m

Vj (λ − ρm,j+1)

⎞⎠ [(w−1βα−1z)N1]λ

⎛⎝←−
N−1∏
j=m

Vj (ρm,j+1)

⎞⎠ = rm(λ)[(w−1βα−1z)m1]λ,

(A.11)

where

rm(λ) =
N∏

j=m+1

A(λ − ρmj )

A(−ρmj )
=

N∏
j=m+1

A(um − vj )

A(vm − vj )
, (A.12)

and the parameters uk, vk, λ, σk, ρk are related by (2.47). We represent the lhs of (A.11) in
the form

N∏
j=m+1

A(ρmj )A(ρjm + λ)

∫
d2ξ ′

j−1

∫
d2ξj−1[ξj−1]−(1+λ+ρjm)

× [ξ ′
j−1 − ξj−1]−(1+ρmj )

[(
wm

ξ

)−1
βα−1z

)
N1

]λ
, (A.13)

where

wm
ξ = w(1 − ξmem+1m) · · · (1 − ξN−1eNN−1). (A.14)

It follows from (A.3) that the integrations in equation (A.13) have to be carried out in the
following order ξm, . . . , ξN−1, ξ

′
N−1, . . . , ξ

′
m. Since the integrals converge, we rearrange them

and carry out the integration over (ξN−1, ξ
′
N−1), then over (ξN−2, ξ

′
N−2), and so on till (ξm, ξ ′

m).
Each integration is reduced to the standard integral∫

d2ξ ′
∫

d2ξ [ξ ]−1−λ+ρ[ξ ′ − ξ ]−1−ρ[ξ − x0]λ = 1

A(ρ)A(−ρ)
. (A.15)

(We recall here that [a]λ = aλ(a∗)λ̄.) Then collecting all factors and taking into account that
(eNN−1 · · · em+1mw−1βα−1z)N1 = (w−1βα−1z)m1 one gets equation (A.11).
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Quite similarly one obtains⎛⎝←−
m−1∏
i=1

Ui (λ − σim)

⎞⎠ [(w−1βα−1z)m1]λ

⎛⎝−→
m−1∏
i=1

Ui (σim)

⎞⎠ = pm(λ)[(w−1βα−1z)mm]λ, (A.16)

where

pm(λ) =
m−1∏
k=1

(−1)λ−λ̄ A(λ − σkm)

A(−σkm)
=

m−1∏
k=1

(−1)λ−λ̄ A(uk − vm)

A(uk − um)
. (A.17)

Using these results one obtains from (A.3)

R(m)(λ)�σρ(z, w|α, β) = f (m)
σρ (λ)T αm,λ (α−1)T βm,−λ (β−1)[(w−1βα−1z)mm]λ

= f (m)
σρ (λ)

[(
βww−1zα−1

z

)
mm

]λ
�σρ(z, w|α, β). (A.18)

Appendix B. Proof of the relations (2.38a) and (2.38b)

In this appendix we give the proof of the relations (2.40) and (2.38b) for the factorizing
operators R(m). We start from equations (2.40) and represent the operator Dk+1,k in the form
(see equation (2.11))

Dk+1,k = −
∑
in

(z−1)kizn,k+1Eni. (B.1)

Since the relations (2.40) hold for the SL(N, C) factorizing operators one can derive the
following equation for the kernel: K(m)

λ,σ,ρ(z, w|α, β),

D
(z)
k+1,kK

(m)
λ,σ,ρ(z, w|α, β) =

∑
in

(z−1)kizn,k+1Ẽ
(α)
ni K(m)

λ,σ,ρ(z, w|α, β), (B.2)

where k > m + 1 and we have used the commutation relations (2.39) for the SL(N, C)

operators. Taking into account that the kernel of the sl(N) factorizing operator R(m)(λ) is
given by the function K(m)

λ,σ,ρ(z, w|ᾱ, β̄) and making use of equations (3.14) one can easily
check that equation (B.2) gives rise to the following equation:

D
(z)
k+1,kR

(m)(λ) = R(m)(λ)D
(z)
k+1,k (B.3)

for the sl(N) factorizing operator R(m)(λ).
The relation (2.38b) is equivalent to the following equation for the kernels:

R(m)
λ+μ,σρ(η, ξ |ᾱ, β̄) = �σ′ρ′

(
R(m)

μ,σ′ρ′(η, ξ |z̄, w̄)R(m)
λ,σρ(z, w|ᾱ, β̄)

)
. (B.4)

This equation is a consequence of the commutation relations (2.39).
Let us rewrite the kernel R(m)

λ,σρ(z, w|ᾱ, β̄) as follows (for brevity we will omit the
normalization factor Am):(
β̄ww−1zᾱ−1

z

)λ

mm
Iσ(z, α)Iρ(w, β) = (

w−1
β β̄−1ᾱ−1zα

)λ

mm
Iσ′

(z, α)Iρ′
(w, β). (B.5)

The key point is that the factor Xm = (
w−1

β β̄−1ᾱ−1zα

)
mm

depends only on the variables z−1
jk ,

with j > m and on the variables wkj with j < m. It can be shown as follows (we consider
only the z case): Xm depends on the variables (zα)km with k = m + 1, . . . , N , which, due to
the triangularity of the matrix zα , are given by linear combinations of the elements (z−1

α )kp
with p � m. The matrix z−1

α is determined by the equation

z−1ᾱ−1 = ᾱ−1
z d−1

z,αz−1
α , (B.6)
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which follows from equation (2.44). It is straightforward to see from the above equation that
the matrix elements (z−1

α )kn depend on the elements z−1
jn with j � k only. Therefore, taking

into account the commutation relations of equation (2.39) one can transform (B.4) to

�σ′ρ′
(
R(m)

μ,σ′ρ′(η, ξ |z̄, w̄)
(
ξ−1
β β̄−1ᾱ−1ηα

)λ

mm
Iσ′

(z, α)Iρ′
(w, β)

)
= (

ξ−1
β β̄−1ᾱ−1ηα

)λ

mm
�σ′ρ′

(
R(m)

μ,σ′ρ′(η, ξ |z̄, w̄)Iσ′
(z, α)Iρ′

(w, β)
)

= (
ξ−1
β β̄−1ᾱ−1ηα

)λ

mm
R(m)

μ,σ′ρ′(η, ξ |ᾱ, β̄) = R(m)
μ+λ,σρ(η, ξ |ᾱ, β̄), (B.7)

where in the last step we use the transformation (B.5).

Appendix C. Proof of the estimate (4.16) for matrix elements of factorizing operators

Here we derive the estimate (4.16) for the matrix element of the factorizing operator R(k)
10 (λ).

Let en(z) and ek(w) be the basis vectors (3.5) in the quantum and auxiliary spaces, respectively.
Defining

En(z) =
∏
i>k

znik

nik!
(C.1)

one can represent en(z) as

en(z) = �kn(σ)Ek(∂ᾱ)Iσ(z, α)|α=1(αij =0,i>j), (C.2)

where �kn(σ) ≡ �σ(ēk, en) and the sum over repeating (multi)indices is implied. The matrix
element [R(k)

10 (λ)]m
′n′

mn can be expressed as follows:[
R(k)

10 (λ)
]m′n′

mn
= �ni(ρ)�mj (σ)Em′(∂z)En′(∂w)Ej (∂ᾱ)Ei(∂β̄)R(m)

λ,σρ(w, z|ᾱ, β̄)
∣∣
z=w=α=β=1.

(C.3)

We are interested in the behavior of this matrix element at njk → ∞, j = k + 1, . . . , N ,
all other indices mji,m

′
ji and nji, n

′
ji , i �= k being fixed. It is clear that the multi-index j

on the rhs of (C.3) varies in finite limits. Using equation (3.22) for R(m)
λ,σρ and carrying out

differentiation with respect to ᾱ and z one finds that the matrix element (C.3) is given by a
sum of terms which have the form

�ni(ρ)En′(∂w)Ei(∂β̄)(β̄w)λ−K
kk P (w, β̄)|w=β=1, (C.4)

where K is some constant. The polynomial P(w, β̄) has a finite degree and does not contain
large factors njk . The factor (β̄w)kk = 1 +

∑
p β̄pkwpk depends only on the ‘large’ variables

wpk , β̄pk . After differentiation with respect to all other variables one gets for (C.4)

�ni(ρ)

N∏
p=k

1

n′
pk!

1

ipk!

(
∂

∂wpk

)n′
pk

(
∂

∂β̄pk

)ipk

(β̄w)λ−K
kk P̃ (wpk, β̄pk)

∣∣∣∣
wpk=βpk=0

, (C.5)

where again the polynomial P̃ does not contain large factors njk . Finally, one gets that (C.5)
is given by the (finite) sum of the terms

�ni(ρ)
�(−λ + K +

∑N
j=k+1(n

′
jk − sj ))

(n′
k+1k − sk+1)! · · · (n′

Nk − sN)!
× R(n′

k+1k, . . . , n
′
Nk), (C.6)

where sj are some constants, R is a polynomial and the difference of indices ijk − n′
jk is finite

at n′
jk → ∞, j = k + 1, . . . , N .
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Let us estimate the coefficient �ni(ρ) when all indices except njk and ijk, j > k are
small. To this end we will use the integral representation (3.15),

�ni(ρ) = cN(ρ)

∫
Dz μN(z)en(z)ei(z), (C.7)

with μN(z) = ∏N−1
j=1 �

−λj −1
j (z†z), λj = ρj − ρj+1. We recall that by definition the integral

(C.7) for arbitrary {λj } is understood as an analytic continuation from the region of λ′ s where
it converges. To stress that the matrix element �ni(ρ) is considered in the special ‘kinematic’
(njk, jjk → ∞) we put more labels on it, �ni(ρ) → �

N,k
ni (λ), and switch from ρ to λ.

To get the necessary estimate we proceed as follows: first we show that the coefficient
�

N,k
ni (λ) for k > 1 can be represented as the sum of integrals (C.7) for sl(N − 1) case

�
N,k
ni (λ) =

∑
q

cq�
N−1,k−1
nq ,iq

(λq). (C.8)

It is important that the sum in (C.8) over q goes in a finite range and the coefficients cq and
parameters (λq)j = λj + δj do not depend on njk, ijk . Continuing this procedure one can
represent �

N,k
ni (λ) as the sum of the elements �

M,1
nq iq

(λq), where M = N − k + 1, thus reducing

the problem to an evaluation of the matrix elements �
M,1
nq iq

(λq).

To prove (C.8) let us make the change of variables z = w−1 and carry out the integrations
over variables w21, . . . , wN1. Let us represent matrix w as

w =
(

1 �0
�a b

)
=

⎛⎜⎜⎜⎜⎜⎝
1 0 0 . . . 0
a1 1 0 . . . 0
a2 b21 1 . . . 0
...

...
...

. . .
...

aN−1 bN−11 . . . bN−1,N−2 1

⎞⎟⎟⎟⎟⎟⎠ (C.9)

and examine dependence of �p on the elements a1, . . . , aN−1. For N ×N matrix M we define
�̃p(M) = det Mp and Mp is (N−p)×(N−p) matrix with elements Mij , i, j = p+1, . . . , N .
Noting that �p(z†z) = �̃p(ww†) = det |(bb†)ij + ai āj |i,j=p,...,N−1 one concludes that

�1 = �1(a1, . . . , aN−1), �2 = �2(a2, . . . , aN−1),
(C.10)

. . . �N−1 = �N−1(aN−1).

Let B = bb† and Ap = (ap, . . . , aN−1). Taking into account that

�̃p(ww†) = det
(
Bp−1 + Ap ⊗ A†

p

) = �̃p−1(bb†) · (
1 + A†

pB−1
p−1Ap

)
(C.11)

one gets for the measure

μN(w) =
N−1∏
p=1

�̃
−λp−1
p (ww†) =

N−1∏
p=1

�̃
−λp−1
p−1 (bb†)

(
1 + A†

pB−1
p−1Ap

)−λp−1

= μN−1(b)

N−1∏
p=1

(
1 + A†

pB−1
p−1Ap

)−λp−1
, (C.12)

where μN−1(b) = ∏N−2
p=1 �̃

−λp+1−1
p (bb†) (�̃0(bb†) = 1). Now one can consequently carry out

the integration over a1, a2, . . . , aN−1. Indeed, let us consider integral∫
d2a1 am

1 ām̄
1

(
1 + A

†
1B

−1A1
)−λ1−1

. (C.13)
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Representing B−1
ij = mij/ det B, where mij = (−1)i+jMij ,Mij being a minor of the matrix

B, one derives(
1 + A

†
1B

−1A1
) =

(
1 +

1

det B

[|a1|2m11 + a
†
1m1j aj + a

†
i mi1a1 + a

†
i mij aj

])
=

(
1 +

m11

det B

[
|a1 + m1j /m11aj |2 +

1

m2
11

a
†
i {m11mij − mi1m1j }aj

])
=

(
1 +

m11

det B
|a1 + m1j /m11aj |2 + a

†
i

(
B−1

1

)
ij
aj

)
. (C.14)

Here the summation over repeated indices (i, j = 2, . . . , N − 1) is implied and we make use
of the identity

{m11mij − mi1m1j } = m11 det B · (
B−1

1

)
ij
. (C.15)

After shifting and rescaling the integration variable one gets for (C.13)
min(m,m̄)∑

q=0

cq(λ1)

(
det B

m11

)q+1 (
−m1j aj

det B

)m−q
(

− m̄1j āj

det B

)m̄−q (
1 + A

†
2B

−1
1 A2

)−λ1+q
, (C.16)

where cq(λ) = Cm
q Cm̄

q q!�(λ − q)/�(λ + 1) and m11 = det B1 = �̃1(bb)†. Evidently,
integrating over a2, a3, . . . one again encounters the integrals of the type (C.13), hence the
final result of integrations can be cast into the form (C.8). This calculation also shows that the
integral (C.7) is a meromorphic function of λ1, . . . , λN−1.

In order to calculate the element �
N,1
ni (λq) one can repeatedly integrate over the variables

zNj , j > 1 in the last row, then over zN−1j , j > 1 in the row N − 1 and so on. Representing
the matrix z in the form

z =

⎛⎜⎜⎜⎜⎜⎝
1 0 0 . . . 0

b21 1 0 . . . 0
...

...
. . .

...

bN−11 bN−12 . . . 1 0
a1 a2 . . . aN−1 1

⎞⎟⎟⎟⎟⎟⎠ , (C.17)

(z†z)ij = (b†b)ij + āiaj , for i, j = 1, . . . , N − 1, one easily finds that �k(z) depends only on
the variables a1, . . . , ak . The integration over aN−1, aN−2, . . . , a2 goes along the same lines
as before. For instance,

N−1∏
k=2

∫
d2ak

N−1∏
k=2

�
−λk−1
k (z†z) = γN−1

[
N−2∏
k=2

�
−λk−1
k (b†b)

]
R(z21, . . . , zN1)

where γN−1 = πN−2(λN−1(λN−1 + λN−2) · · · (λN−1 + · · · + λ2))
−1 and

R(z21, . . . , zN1) = (1 + |z21|2 + · · · + |zN−11|2)λ2+···+λN−1−1

(1 + |z21|2 + · · · + |zN1|2)λ2+···+λN−1
.

Therefore, one gets⎛⎝ ∏
1<j<k�N−1

∫
d2zkj

⎞⎠ μN(z)en(z)ei(z)

=
∑

q

c(λ, q)

N∏
p=2

z
mp

p1 z̄
lp
p1

N−1∏
n=2

(
1 +

n∑
k=2

|zk1|2
)μn−1 (

1 +
N∑

k=2

|zk1|2
)−�N −1

,

(C.18)
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where mp = ip1 + rp(q), lp = np1 + sp(q), μp = λp + δp(q) and �N = μ1 + · · · + μN−1. The
parameters c(λ, q), rp(q), sp(q), δp(q) do not depend on nk1, ik1, k = 2, . . . , N and the over
multi-index q goes in the finite limits. Finally, after integration over zp1, p = 2, . . . , N one
gets for each term in the sum

πN−1c(λ, q)

N∏
p=2

(−1)mp+1δmp,lpmp!
N∏

k=3

�(1 − �k−1 + Mk)

�(1 − �k + Mk)

�(1 − �N)

�(1 − �2 + M2)
, (C.19)

where �k = μ1 + · · · + μk−1 and Mk = mk + · · · + mN . Together with equation (C.6) this
results in the estimate (4.16).
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